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Fuzzy Neural Network Based Generalized Predictive Control
of Chaotic Nonlinear Systems

o T

(Jong Tae Choi - Yoon Ho Choi)

Abstract - This paper presents a generalized predictive control method based on a fuzzy neural network(FNN) model, which uses the on-line
muiti-step prediction, for the intelligent control of chaotic nonlinear systems whose mathematical models are unknown. In our design method,
the parameters of both predictor and controller are tuned by a simple gradient descent scheme, and the weight parameters of FNN are
determined adaptively during the operation of the system. In order to design a generalized predictive controller effectively, this paper describes
coraputing procedure for each of the two important parameters. Also, we introduce a projection matrix to determine the control input, which
decreases the control performance function very rapidly. Finally, in order to evaluate the performance of our controller, the proposed method is
apylied to the Duffing and Hénon systems, which are two representative continuous-time and discrete-time chaotic nonlinear systems,

resectively.
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1. .Introduction

t has long realized that the responses of many nonlinear
dy:.amical systems do not follow simple, regular, and predictable
trarcctories, but swirl around in a random-line and seemingly
irre gular, yet well-defined, fashion. As long as the process involved
is ronlinear, even a simple strictly deterministic model may develop
suc1 complex behavior. This behavior has been understood and
accepted as chaos and has led to dramatic developments in the
nor linear sciences and dynamical systems engineering.

n the last few decades, chaos has received increasing attention in
various areas such as mathematics, engineering, physics, biology,
eccnomics, etc., since chaos may actually useful under certain
ciroumstances [1-3]. Due to its unpredictability and irregularity,
chaos can lead systems to troubled, unstable, or even catastrophic
siti.ations. Therefore, in many cases, chaos is considered as an
uncesirable phenomenon to be avoided or controlled [4].

"he concept of chaos control, similar to conventional systems
cortrol, has come to mean stabilization of unstable periodic orbits of
a dvnamical system. In the pursuit of chaos control, many methods
an¢ techniques discussed in the last few years work remarkably well
up o a point. However, there are still many problems that need to be
considered. For instance, the parametric variation control method,
which is proposed by Davies and Rangavajhula [5]. is out of the
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question when none of the system parameters is accessible; the
engineering feedback control [6], open-loop entrainment-migration
methods, and conventional control methods [7-11] such as optimal
control, adaptive control, and robust control may not be feasible
when an explicit, faithful mathematical model cannot be constructed
due to the extreme complexity of the physical system to be
controlled. Various difficulties encountered in handling chaotic
systems have posed a real need for using some kind of intelligent
mechanism that does not rely on accurate mathematical models or
accessible parameters of physical systems [12-14].

Generally speaking, expert systems, neural network, fuzzy logic
technology, statistical methods, Petri-nets, genetic algorithm, erc.,
belong to the most widely recognized class of artificial intelligence
technologies. Neural networks are mathematical models developed in
an attempt to emulate human neural systems. Conventional neural
networks have good ability of self-learning but have some limitations
such as slow convergence, difficulty in reaching global minima in the
parameter space, and sometimes instability as well [15]. On the other
hand, fuzzy logic technology is a human-imitating logic, but is lack
of ability of self-learning and self-tuning [16]. Therefore, in the
research area of intelligent control, FNNs (Fuzzy Neural Networks)
are devised to overcome the limitations and to combine the
advantages of both neural networks and fuzzy logic [17,18]. This
provides a strong motivation for using FNNs for chaos control.

This paper proposes a design method of a generalized predictive
controller [19,20] for chaotic systems whose precise mathematical
models are not available. In our method, FNN is used as the predictor
whose parameters are tuned by the error between the actual output of
chaotic system and that of its FNN model. A generalized predictive
controller for FNN model is developed in such a way that its
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parameters are adjusted by using the gradient descent scheme, where
the difference between the actual output and the reference signal is
used as control input. Also, we have introduced a projection matrix to
determine the control input, which decreases the control performance
function very rapidly [21]. Finally, in order to evaluate the
performance of our controller, we apply the proposed method to the
continuous-time and discrete-time chaotic nonlinear systems.

This paper is organized as follows. Section 2 describes the
structure and learning method of FNNs. In Section 3, the structure of
a generalized predictive control system based on FNN model and the
design method of the controller are presented. For illustrative
purposes, simulation results for two representative chaotic systems
(the Duffing and Hénon systems) are presented in Section 4. Finally,
conclusions are drawn in Section 5.

Throughout this paper, we will use the following generic
notations: lower case symbols such as gy, o, w, refer to scalar
valued objects, lower case boldface symbols such as xy, refer to
vector valued objects, and finally capital symbols will be used as
matrices.

2. Fuzzy Neural Networks

Fuzzy logic has a distinguished feature that it can describe
complex nonlinear systems linguistically [22,23]. However, it is very
difficult to identify the fuzzy rules and tune the membership
functions of the fuzzy reasoning mechanism. Neural networks, on the
other hand,
identification and tuning, but they have the following problems

utilize their learning capability for automatic
[24-271: (i) they need accurate input-output data; (ii) their learning
process is time-consuming, to mention a few.

The basic idea of using FNN is to realize the process of fuzzy
reasoning by the structure of a neural network and to make the
parameters of fuzzy reasoning be expressed by the connection
weights of a neural network. FNNs can automatically identify the
fuzzy rules by modifying the connection weights of the networks
using the gradient descent scheme. Among various fuzzy inference
methods, FNNs use the sum-product composition. The functions that
are implemented by the networks must be differentiable in order to
apply the gradient descent scheme to their learning.

2.1 Structure of fuzzy neural networks

Fig. 1 shows the configuration of FNN, which has two inputs
x,, T,), one output , and three membership functions in each
15 Ty put 1y,

premise. The circles and the squares in the figure represent the units
of the network. The denotations y, &, s, and the numbers 1, -1

between the units denote connection weights of the network.

FNN can be divided into two parts according to the process of the
fuzzy reasoning: the premise part and the consequence parts. The
premise part consists of layers (A) through (E) and the consequence
parts consist of layers (E) through (F). The grades of the membership
functions in the premise are calculated in layers (A) through (D). The

connection weights % and ', are the parameters used to determine

A)
L

Input space

premises consequences  Output space

Fig. 1 Configuration of FNN

the central position and the gradient of the sigmoid function in the
units of layer (C), respectively. The output of unit in layer (C) is
given by:

f:

o)

1
1+ exp{—w, (z,—w, )]

where %; is the sth input. Thus, by initializing the connection
weights appropriately, the membership functions 4, A,; and Ay,

can be allocated to the universe of discourse, as shown in Fig. 2.

| A 4,(x) A,(x)
Fuzzy 051
value
0 ]
min( x,) max(x;)

Fig. 2 Membership function in premise

The pseudo-trapezoidal membership function 4 is composed by

using two sigmoid functions, as illustrated in Fig. 3.

-1 |- Stemacacmemcsenarresennan
Fig. 3 Composition of membership function 4,

The truth values of the fuzzy rules are obtained as the outputs of
the units in layer (E). In case of Fig. 1, the input space is divided intc
nine fuzzy subspaces, as shown in Fig. 4.



max(x,) r

min( x,)
min{ x,)
Fig. 4 Fuzzy subspace in input space

‘The truth value of the fuzzy rule in each subspace is given by the
product of the grades of the membership functions for the units in
laysr (E), as follows:

inputs of layer (E) : 4= H Ai]](zj) @
7

and

Nutputs of layre (E) :AH, = —,,L 3

Z}lﬂk

where #; is the truth value of the éth fuzzy rule, }4 is the normalized
value of 4 and 7 is the number of fuzzy rules. The subscript 3 in
Eqi. (2) varies, as shown in Fig. 4. In the subspace of R, for
example, Eqn. (2) is written as 4 = A, (z, )A,,(z, ). FNN realizes

the center of gravity defuzzification formula usiné #n Eqn. (3).

The consequence parts consist of layers (E) through (F), and the
fuzy reasoning is realized as:

R':Ifzis A, and Bis A, theny= wy, (i=1,2,---,n)
ind

1= A= Y, 4)
izl

where R is the 4th fuzzy rule, A, and A, are fuzzy variables in
the premise, u}, is a constant, n is the number of fuzzy rules, and y

is the inferred value.
2.2 Learning method of fuzzy neural networks

""he weights u; should be modified to identify fuzzy rules using

the gradient descent method. In order to apply the gradient descent
method, the squared error function is defined as:

2

p= Ly =L

where y is the inferred value of FNN, and s the desired value.

Using the gradient descent method, the weights can be modified
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as:
wy; (k+ 1) = wy, (k) + Aw,, (k)
= w,, (k) —W%
oE oy ©)

I

(k)—n9E __9y
wb:( ) nay awb;‘(k)
wy (k) +1(y—y)p,
wy (k) +n- e p

where Aw,; (k) = w,, (k) — w,; (k— 1), k means the k-th time to
update the weights, and 7is called the learning rate.

3. Design of a Generalized Predictive Controller Using
Fuzzy Neural Networks

3.1 Structure of a generalized predictive contro! system

We discuss both continuous-time and discrete-time uncertain
chaotic control systems. Suppose that a chaotic plant is given without
precise mathematical description of its structure and parameters, and
that the given plant, although uncertain, has an inherent unstable
periodic orbit and the system is currently in the chaotic state. The
objective is to design a controller, which, when being added to the
plant in a feedback configuration, is used to drive the closed-loop
system response to move out of the chaotic attractor and then to
converge to the unstable periodic orbit.

It is assumed that the closed-loop system output data are available
on-line for the design and use of the controller. In the design, an
on-line system prediction unit based on FNN is employed and a
nonlinear feedback controller with a generalized predictive control
scheme is implemented. Fig. 5 shows the overall configuration of the
closed-loop control system, where the output ¢k ) is to be controlled

to track the reference, y(k ).

Chaotic .
> System y(k)
{Plant)
; z )
% VA
Fuzzy

Neurat

> : (k)
% Network :
Y {Predictor) E

k ‘ k Gk )
“0 o «® AZ 7. () Reference [
{Controller) Model ‘,,

Fig. 5 Structure of a generalized predictive control system

using the fuzzy nerual network

In Fig. 5, predictor parameters are tuned by the prediction error,
e;(k), between the actual output of a chaotic nonlinear system and
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that of a fuzzy neural network model. And the parameters of a
generalized predictive controller are tuned by gradient descent
method which uses control error, g(k), between the prediction

output of a fuzzy neural network model and the reference signal.

3.2 Design of a generalized predictive controller using
FNN

We are looking for an optimal control signal, ¢k), for

minimizing the following performance function:

!

o
Il

(Wk+ 1) =y (k+ 1))+ A (u(k) ~u(k—1))
™

ba]»a bqlbd

lel(k+1)+AAu? (k)

where y(k +1) is the predicted output of FNN, y(k + 1) is the
reference signal, the positive constant Aweights the relative
importance of control signal, and A (k) = u(k) —u(k—1).

Using the FNN, the predicted output is formulated as

H
y(k+1) = Fu,Fi(x) ®)

i=1

where F,(x ) is an inferred value of a sth fuzzy rule, and His a total
number of a fuzzy rule.
To minimize ¢ u(k) is recursively calculated via the gradient

descent scheme.

where the positive constant 7is the learning rate. It can be seen that
the controller relies on the approximation performed by FNN.
Therefore, it is necessary for the estimated output gk +1) to
approach the real system output ¥k +1 ) asymptotically, which can
be achieved by keeping FNN training on-line. Differentiating the
Eqn. (7) with respect to «(k ), we have:

s (k+ 1

=ec(k+1) Du (k)

+AAu(k)

Fu(k) (10)

By (k+1
where Bu (k)
u(k). It can be analytically evaluated by using the known FNN

is the gradient of FNN model with respect to

structure, Eqn. (8), as follows:

8" H p

H p an
= 3 [ F 00 60525

ox T .
S S e 0
where 5a (k) j0,0,---,1,0, | and we describe the

computing procedure for G(x ) in Appendix A.1.

Finally, Eqn. (9) becomes:

u(k+1) = u(k)

12
_n[ep(k+l)2[ub,F(x)G(x)]a D) +/\Au(k)] (12)

So far, we have described the algorithm for a one-step aheac
predictive control scheme. Then, we let the algorithm describe:
above be extended to a multi-step ahead control scheme, whicl
considers not only the instant value of the control signal but also it
future values. The future values of the references and the systen
outputs are needed to formulate the control signal. Since FNN mode
represents the system to be controlled asymptotically, it can be use
to predict future values of the system output. The contro

performance function for a multi-step ahead predictive control is:

N N
J = %[E(y(k—ﬂ')—y,(k+i))2+)\ZAu2(k+i~—1)]
= =1
(13)
where N is the prediction horizon.
And, we denote the following vectors:
Y= [9,(k+1), 4, (k+2), -, g (k+N)]T
Ve = lg(k+1), g(k+2), -, g (k+ )"
Eyi=le(k+1), e(k+2), -, e(k+N)|T 14
Uy = [Au(k), Au(k+1), -, Au(k+N—1)]T
Ule = [u(k;)’ u(k+1)1 ] u(k+N—1)]T

Using the vectors of the Eqn. (14), the Eqn. (13) is rewritten a
follows:

bo|hd

[EleEN|L+/\UN|LUN|L] (15)

Thus, the control objective is to find §f,, such that J is

minimized. By using the gradient descent scheme, the contro
sequence Ucan be updated at each iteration as follows:
UNIL'H: Upi— 1Dy (16)

where Dy, . denotes the search direction at the present time instant.k
Also, Dy, is determined in the sense that the negative of the

gradient projected on the constraints gives the direction in which th
control performance function decreases most rapidly [21]. The searc
direction at time kis given by



Y -
O = Pujigls Enpy + AMU g

: 17
s {an

where Py, denoted by the projection matrix, is an S N diagonal
malirix with unity initial value, B, =0, and the M is a NX N

matrix as follows:

1 =10 0 - 0}
01 -10 - 0

M=o .0 0 1 -1 0 (18)
0 e e 01 -1,
0 e 0 1]

And, the partial derivative of A),(,, x With respect to Uy, is given
by:

[Oy(k+1) By(k+2) dy(k+N) |
Ou(k) T u(k) Bulk) |
oy By (k+2) Sy (k+N)
aU:.: = 0 3U({€"+1) Bu(k5+1) (19)
Lo o _Oy(k+N) |
* u(k+N—1) .
E)

where 8UN is the gradient of the control performance function
Nk

witn respect to Uy, which can be derived from FNN model. We
. . 81’\/N k. .
als.» describe the computing procedure fora—U—I— in Appendix A.2.
Nk
Jach individual element of the control sequence is updated by
clipping the results obtained from Eqn. (16) according to:

Au< Au(k+i—1) < Au (20)

where Au(k+:—1) = u(k+i—1)—u(k+i—2) and each
Av and Au can be heuristically chosen to be some very small

values.
lhe projection matrix £, is then updated according to {f;  at

eac: iteration, by

k(3 9)

if Au < Au(k+i—1) < Au
otherwise

z{ 0
PN|k—1(i:i)

i=12, -, N (21)

“inally, the first element of §, ;,, of the new control sequence

is anplied to the system as the control signal.
4. Simulation Results

“his paper performed simulation under PC with Intel Pentium
Microprocessor using MATLAB 6.x program package. In this
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section, we present some simulation results to validate the control
performance of the proposed controller for both continuous-time and
discrete-time chaotic systems. Also, in order to evaluate performance
of proposed controller, we compare the results of a FNN based
generalized predictive controller with those of a neural network(NN)
based generalized predictive controller.

4.1 Objects of simulation
We consider the Duffing system and Hénn system as

representative continuous-time and discrete-time chaotic systems.
The state equations of these systems are as follows:

Duffing:
z(t)] - y (1)
(1)) a,z(t)—z3(t) —ayy(t) + beos(wt) +u(t)
@)
where typically g = 1.1, 0, =0.4, b =2.1, w=1.8.
Hénon: Tnil — yn+l_a1‘3 (23)
Yn11 bz, + u,

where a= 1.4, b=10.3.
Figs. 6 and 7 are the strange attractors of Duffing and Hémp
systems, respectively.

The Strange Attractor of Duffng Chaotic System

=

="\

Iy

ST

.

Fig. 6 Strange attractor of the Duffing system

The Strange Attzactor for Hensn Sysiem

Fig. 7 Strange attractor of Héna system
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4.2 Controlling the Duffing system

On-tine pradiction result for Dumnq system

fr————————
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either a chaotic or a periodic solution. In the tracking control for step

The contro! objective for the Duffing system is to follow the
unstable periodic solution of the Duffing equation. In other words, as

x
é‘nfaeuha

the value of & in Eqn. (22) varies, the Duffing equation may have

/‘; SN eeter w
T

9100 9zoo 9300 8400 5500 9800 8700 uun 9900 10000
step

Duffing system, both a FNN and NN predictors have two past
outputs of the plant, one current output and one past output of
controller as the inputs. A FNN predictor uses twelve membership

¥
o‘.»o»uo

functions in each input and the hidden layer of the NN predictor has
five nodes. Also, the learning rates of a FNN predictor, a NN
predictor, and a generalized predictive controller are 0.1, 0.1, and Fig. 9 On-line prediction results using the FNN predictor for
0.01, respectively. And, each sampling period is 0.05 second. We Duffing system

define the initial system state as (1, 0) and the reference signal as one

periodic solution in the case of &= 2.3. Finally, the weighting

Contral result for Dufting system

factor, A, of a generalized predictive controller is 0.1. "= Rstarence | Relauneo

The membership functions of the FNN used for this simulation are . z /\/\/\/\/\ /\ /\/\//\/ \ I, § ]‘
shown in Fig. 8. And, Fig. 9 shows the on-line prediction result for a -2

FNN predictor, and Fig. 10 shows the tracking control result for a

2700 9200 5905 9400 5500 5500 5700 5830 9500 10000
step

FNN based generalized predictive controller. Finally, Fig. 11 shows

)

6
the control signal using the FNN for Duffing system. ‘ A {q KA A f\ - Pam 1
Al . ) . 2 3 »JH. VLTV T T
so, Fig. 12 shows the on-line prediction result for a NN - oL : ’ i l’ ” by l fy H ? |
MIURVR TN w ’u MRV
6

based generalized predictive controller. And, Fig. 14 shows the ® T 5100 9200 39300 8400 9500 9800 5700 9800 9300 10000

step

predictor, and Fig. 13 shows the tracking control result for a NN

control signal using the NN for Duffing system.
In this paper, we uses the mean-squared errors (MSEs) as the Fig. 10 Tracking coentrol results for Duffing system (FNN)
performance index. The MSEs of system prediction and control
performance are given in Table 1. Tre contret sipmar
From the results obtained above, we can see that although Y T T
prediction errors (state x: 0.0317, state y: 0.1231) of a FNN model *
are more than that (state z: 0.0108, state y: 0.0113) of a NN model, 2 *
a FNN based generalized predictive controller shows better control 20 W“W

performance, and it is faster and more effective, as compared with a at W‘
NN based generalized predictive control. In other words, the MSEs .
(state z : 0.1044, state y : 0.5554) of a FNN based generalized |

0 1000 2000 3000 4000 $000 6000 7000 BOOO 9000 10000

predictive control are better than the MSEs (state £3.7029, state y: ries

11.4418) of a NN based generalized predictive control. Also, unlike Fig. 11 Control signal for Duffing system (FNN)
control signal shown Fig. 14, the control signal in Fig. 11, which is
the output of a FNN based generalized predictive controller, is more

On-line pred-cuon rasull for Duffing system

stable. Especially control signal in Fig. 11 converges at about 1000

—— Plant
steps. On the other hand, control signal in Fig. 14 not converge. Kﬁ@
JW\M TATATAVAVAVAYAY v
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Fig. 12 On-line prediction results using the NN predictor fc
Fig. 8 Membership functions of FNN (Duffing system) Duffing system
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Fig. 13 Tracking control results for Duffing system (NN)

Control Signal
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Fig. 14 Control signal for Duffing system (NN)

Table 1 Prediction and control errors for Duffing system

Fuzzy Neural |Prediction (MSEy 0.0317 0.1231
Network (FNN)! Control (MSE) | 0.1044 0.5554
Neural Network| Prediction (MSE)  0.0108 0.0113

(NN) Control (MSE) | 3.7029 11.4418

4.3 Controlling the Hénon system

n this subsection, the simulation results of the proposed
generalized predictive control scheme for the discrete-time chaotic
sysiems are presented. Also, in order to evaluate the control
per-ormance of our method, we compare the simulation results of the
prososed controller with those of a NN based generalized predictive
corroller. In this simulation, the control objective for the ddon
sys'em is to regulate the chaotic orbit to a desired point. Both FNN
anc NN predictors for Hénm system have four inputs; two past
outnuts of Hénm system, one current control signal of the controller,
anc one past control signal of the controller. FNN has twelve
membership functions in each input and the node number of the
hidden layer for the NN is 10. The learning rate for a FNN predictor,
a NN predictor and a generalized predictive controller are 0.1, 0.1,
anc. 0.01, respectively. For the Héno system, the system initial state
starts from(0, 0) and the reference signal is (0, -1). Finally, the
weighting factor of control signal for a generalized predictive

EE ujdg Aade ;A MP Y Jjuh A9ty ol x KO
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controller is 0.1.

Fig. 15 shows the membership functions of a FNN for Ehon
system, Figs. 16 and 17 show the regulation control results and the
on-line prediction result for a FNN based generalized predictive
controller, respectively. Fig. 18 shows the control signal output for a
FNN based generalized predictive controller.

Also, Fig. 19 shows the regulation control result for a NN based
generalized predictive controller, and Fig. 20 shows the on-line
prediction result for a NN predictor. Fig. 21 shows control signal
using a NN for Eénon system.

The MSEs of system prediction and control errors for both
controllers are given in Table 2.

From Figs. 16 and 19, we can see that the chaotic signal
controlled by a FNN based generalized predictive controller
converges to the desired point at about 230 steps, but the chaotic
signal controlled by a NN based generalized predictive controller
converges to the desired point at about 750 steps. From the results
obtained above, we can see that a FNN based generalized predictive
controller shows the better control performance, as compared with a
NN based generalized predictive controller, and that the chaotic
signal controlled by a FNN based generalized predictive controller
converges to the desired point rapidly. In other words, the prediction
(state z: 0.0087, state y: 0.0149) and control errors (state z 0.0101,

state 3 : 0.0192) of a FNN based generalized predictive control are
better than the prediction (state z: 0.0916, state y: 0.0164) and
control errors (state z: 0.1464, state y: 0.3990) of a NN based

generalized predictive control. And, control signal of a FNN based
generalized predictive controller is faster than control signal of a NN
based generalized predictive controller.
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Fig. 15 The membership functions of FNN (Hénp system)

The Qutput of Henon System
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Fig 16 Regulation control results for Bnon system (FNN)
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The Qutput of FNN Model
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Fig. 17 On-line prediction result using the FNN predictor for
Hénon system

The Controt signal
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Fig. 18 Control signal for Héna system (FNN)

The Qutput of Henon Systam

100 200 300 400 500 600 700 600 900 1000
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Fig. 19 Regulation control results for Hnon system (NN)

The Cutput of NN Modet

400 500 600 700 800 900 1000
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" " "
0 100 200 300

Fig. 20 On-line prediction results using the NN predictor for
Hénon system
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The Control signal

0 100 200 300 400 600 600 700 600 900 1000
step

Fig. 21 Control signal for Héna system (NN}

Table 2 Prediction and control errors for Hnon system

5. Conclusions

In this paper, we have presented the design method of i
generalized predictive controller based on a fuzzy neural networ
model, which was used to perform the multi-step prediction on-lin¢
for the intelligent control of chaotic systems whose mathematic:
models are unknown. In our design method, the parameters of bot
predictor and controller were tuned by a simple gradient descer
scheme, and the weight parameters of FNN were determinec
adaptively during the operation of the system. In order to design
FNN based generalized predictive controller effectively, this papx
has described a computing procedure for each of the two importar
parameters mentioned above. Also, we have introduced a projectio
matrix to determine the control input, which decreased the contrc
performance function very rapidly. Finally, in order to evaluate t
performance of our controller, we have applied the proposed metho
to the Duffing and Hénm systems, which are two representative
continuous-time and discrete-time chaotic systems, respectively. Tt
simulation results have shown that a FNN based generalize
predictive control scheme has the faster convergence property an
more accurate control performance than those obtained by som
conventional NN based control schemes. Through simulations, w
have also verified that the proposed generalized predictive controll
scheme works well for various chaotic systems.
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Appendix A

The design method of the controller used in this paper is based on
the gradient descent scheme. In this appendix, we describe a
computing procedure for each of the two important parameters for the
predictor and the controller in the design. The mathematical
expressions are all based on the structure of FNN shown in Fig. 5.

A.1 The computing procedure for G(x )

We first describe the computing procedure for {fx) of Eqn.

(13). Assume that FNN predictor has two inputs (one past value of
the chaotic system and one current value of the control signal) and
three membership functions (for simplicity of description here):
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g!k+1!

9 lk) Z[wb.F (x) G 5oy 8u(k) (A1)

where x=[z(k) u(k)]7. The vector G(x) is computed as

follows.
[ w,"exp{-w wlxty- W:u)} "
- 1+exp{- W~ wcll)}
i=1 = G| _, oo ;, )= w,,)
i 1+exp{—w,,z u(k)-w,,)f
r w!“expPW,u V(k) Wcu)} "
- 1+exp{—w W (x ) - ch)
i=2 > Gx)=|_ 152 EXPA W, () - W;zz!} Wy X W (k) i, )
L 1+ CXP{' Wen (“(k) W2 )} 1+ CXP{' Wesz ("(k) “Wen )}
P—w'"exp{‘w,u(x(k) ch)} i
- 1+CXP{" W,n(‘(k) ch)}
i=3 = G(x)=|_ o exp{_w"z(u(k) Wi )
L l+exp{— W (uk) - Wuz)}
" Wen CXP{' W,zl("(k) Wczx)} T Wen EXP{‘ w‘“(x(k) ~Wen )}-T
i=4 = G(x)= 1+CXP{— Wea V(k) W, 21&} l+exp{— W, 31("(k)-wc31)}
Wz €XP I W, (k) ~w
| l+exp{- wg,,(u(k) w, |2)}
"WmeXPFW,n(Y(k) Wm)} WﬂlexP{_wﬂl(x(k)‘w”“)}—T
o5 o G- l+cXp{'W,;| x(k)y— WCZI)} l+exp{—w.3| x(k)— Wcll)}

= Wen €XP ",zz(u(k) wczz) = W3, EXP W:z(“(k) Wcsz)
L l"’exP%w,zz u(k)— sz)} 1+CXP{"W331(“(") welZ)} i

‘Wgue"p{‘wgzl("(k) Wcu)} —Wgnc’(p{'wg:l("(k) cn)}
1+ exp v, (x(k) - wé} 1+ explwg, (e —wep )
~ Woa2 EXP W,u(u(k) Wcuﬁ

i 1+ expl W, (u(k) - we )f

i=6 = Gx)=

[- Wea CXP{‘ W,u("(k) Wcu)} ’
H‘CXP{"WNI x(k)— wcll)}

i=7 = G,(x)= . e,(p{_wﬂ2 (utk) ~w.y, )
L l+exp{- w!,z(u(k) w, 12)}
~“Weu EXP{‘ Wea X(k) Wcu)} '
_ 1+exp{——w o (x (kY- wcllﬁ
=8 G,
! = )= Wen exp{- nz("(k) W, 12 ‘} Wyx €XP IJZ(u(k) Wesz )}

L I+ eXp{" Wen (“(k) Wen )r 1+ exP{" Wen (“(k) Wesz )}
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l+exp{_w,4|(t(k) weu)}

=W €XPL- W, (k) - Wuz)
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i=9 = G,(x)=

A.2 The computing procedure for——NJL
AUy,

vy
We need to find the important parametel‘——“L in the controller

AUy,

oYy
design. We can find the Jacobian matrixmrs by differentiating

OUy,

f’m & with respect to U, ;. The following illustrates the procedure of

computing the elements in the Jacobian matrix for &= 3.

1st column :
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Gk +1) Z[ Wy F (G, (0]

s TS Z[wb,-F.-(x)Gi(x)

0
0
1
0

Fk+1) _
oulk+1)

ay(k +1)
ou(k + 2)

where x= [ y(k) g(k—1) u(k) u(k—1)1"

2nd column :
ok +1)
au(k)
Fik+2) i (
D - 3 R 0G0 = YT F 06,0 :
1
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Fk+2) i 0
du(k+1) ;l uF (%G, (")]au(k 3~ 2 EmG0]
0
Pk+2) _
Ou(k +2)
wherex = [ g(k+1) g(k) u(k+1) u(k)]”
3rd column :
Hk+2)]
du(k)
8}(k+3) yk+1)
20l) Z 4 F (X)G, (x )]—_6u(k)_z_',:[wb’ (%G, (%) 5“3")
0 -
Bk +2)]
. Au(k+1)
oy(k +3) H 0
au(k +1) Z.[ wh (06, (")]au(k ) = 2w G, .
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H(k+3) Ll 0
ks 2) Zl[ W F(X)G, (x)]au(k o) iz:l:[w,,,.F,.(x)G,.(x) )
0

wherex = [ j(k+2) y(k+1) u(k+2) u(k+1)]".
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