• Title/Summary/Keyword: Prediction modeling

Search Result 1,896, Processing Time 0.031 seconds

Lagrangian Particle Dispersion Modeling Intercomparison : Internal Versus Foreign Modeling Results on the Nuclear Spill Event (방사능 누출 사례일의 국내.외 라그랑지안 입자확산 모델링 결과 비교)

  • 김철희;송창근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.249-261
    • /
    • 2003
  • A three-dimensional mesoscale atmospheric dispersion modeling system consisting of the Lagrangian particle dispersion model (LPDM) and the meteorological mesoscale model (MM5) was employed to simulate the transport and dispersion of non-reactive pollutant during the nuclear spill event occurred from Sep. 31 to Oct. 3, 1999 in Tokaimura city, Japan. For the comparative analysis of numerical experiment, two more sets of foreign mesoscale modeling system; NCEP (National Centers for Environmental Prediction) and DWD (Deutscher Wetter Dienst) were also applied to address the applicability of air pollution dispersion predictions. We noticed that the simulated results of horizontal wind direction and wind velocity from three meteorological modeling showed remarkably different spatial variations, mainly due to the different horizontal resolutions. How-ever, the dispersion process by LPDM was well characterized by meteorological wind fields, and the time-dependent dilution factors ($\chi$/Q) were found to be qualitatively simulated in accordance with each mesocale meteorogical wind field, suggesting that LPDM has the potential for the use of the real time control at optimization of the urban air pollution provided detailed meteorological wind fields. This paper mainly pertains to the mesoscale modeling approaches, but the results imply that the resolution of meteorological model and the implementation of the relevant scale of air quality model lead to better prediction capabilities in local or urban scale air pollution modeling.

A Study on Prediction of Acoustic Loads of Launch Vehicle Using NURBS Curve Modeling (넙스(NURBS) 곡선 모델링을 이용한 발사체 음향하중 예측에 대한 연구)

  • Park, Seoryong;Kim, Hongil;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.106-113
    • /
    • 2018
  • The Intense acoustic wave generated by the jet flame at the lift-off causes the vehicle to vibrate in the form of acoustic loads. The DSM-II(Distributing Source Method-II), which is a representative empirical acoustic loads prediction method, is a method of distributing a noise source along a jet flame axis and has advantages in calculation cost and accuracy. However, due to the limitation of the distributing method, there is a limit to accurately reflect the various launch pad configurations. In this study, acoustic loads prediction method which can freely distribute noise sources is studied. by introducing NURBS(Non-Uniform Rational B-Spline) modeling into empirical prediction method. For the verification of the newly introduced analytical technique of the NURBS, the acoustic loads prediction for the Epsilon rocket's low-noise launch pad shape was performed and the results of the analysis were compared with the existing prediction methods and experimental results.

Prediction of Postural Sagging Observed During Driving in Korean Male Drivers (한국인 남성 운전자의 운전 자세에서 발생하는 몸통 처짐 현상에 관한 예측 모델 연구)

  • Oh, Youngtaek;Jung, Eui S.;Park, Sungjoon;Jeong, Seong Wook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • In the vehicle design, the research on driving posture has stood out as one of the important issues. Recently, the research on 3D human modeling focused on more exact implementation of real driving posture. However, prediction of driving posture through the 3D human modeling fail to reflect on the model the phenomenon called sagging, which refers to the retraction or shrinking of the torso while driving. 30 male subjects participated in the experiment where total subjects were divided into four groups according to height percentile(under 50%ile, 51%ile to 75%ile, 76%ile to 95%ile, over 95%ile). The independent variables were seat back angle(4 levels) and seat pan angle(2 levels). The dependent variable was capacity or the degree of retraction of the torso. First this study measured the sagging capacity by using a paired T-test between erect and retracted posture. Secondly it was tried to find out significant anthropometric variables that were statistically correlated by the analysis of correlation. Finally, a prediction model was derived which explains the capacity of sagging.

A Study on Fine Dust Modeling for Air Quality Prediction (미세먼지 확산 모델링을 이용한 대기질 예측 시스템에 대한 연구)

  • Yoo, Ji-Hyun
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1136-1140
    • /
    • 2020
  • As air pollution caused by fine dust becomes serious, interest in the spread of fine dust and prediction of air quality is increasing. The causes of fine dust are very diverse, and some fine dust naturally occurs through forest fires and yellow dust, but most of them are known to be caused by air pollutants from burning fossil fuels such as petroleum and coal or from automobile exhaust gas. In this paper, the CALPUFF model recommended by the US EPA is used, and CALPUFF diffusion modeling is performed by generating a wind field through the CALMET model as a meteorological preprocessing program that generates a three-dimensional wind field, which is a meteorological element required by CALPUFF. Through this, we propose a fine dust diffusion modeling and air quality prediction system that reflects complex topography.

PREDICTION MEAN SQUARED ERROR OF THE POISSON INAR(1) PROCESS WITH ESTIMATED PARAMETERS

  • Kim Hee-Young;Park You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.37-47
    • /
    • 2006
  • Recently, as a result of the growing interest in modeling stationary processes with discrete marginal distributions, several models for integer valued time series have been proposed in the literature. One of these models is the integer-valued autoregressive (INAR) models. However, when modeling with integer-valued autoregressive processes, the distributional properties of forecasts have been not yet discovered due to the difficulty in handling the Steutal Van Ham thinning operator 'o' (Steutal and van Ham, 1979). In this study, we derive the mean squared error of h-step-ahead prediction from a Poisson INAR(1) process, reflecting the effect of the variability of parameter estimates in the prediction mean squared error.

Prediction of Stand Structure Dynamics for Unthinned Slash Pine Plantations

  • Lee, Young-Jin;Cho, Hyun-Je;Hong, Sung-Cheon
    • The Korean Journal of Ecology
    • /
    • v.23 no.6
    • /
    • pp.435-438
    • /
    • 2000
  • Diameter distributions describe forest stand structure information. Prediction equations for percentiles of diameter distribution and parameter recovery procedures for the Weibull distribution function based on four percentile equations were applied to develop prediction system of even-aged slash pine stand structure development in terms of the number of stems per diameter class changes. Four percentiles of the cumulative diameter distribution were predicted as a function of stand characteristics. The predicted diameter distributions were tested against the observed diameter distributions using the Kolmogorov-Smirnov two sample test at the ${\alpha}$=0.05 level. Statistically, no significant differences were detected based on the data from 236 evaluation data sets. This stand level diameter distribution prediction system will be useful in slash pine stand structure modeling and in updating forest inventories for the long-term forest management planning.

  • PDF

Development of a Weather Prediction Device Using Transformer Models and IoT Techniques

  • Iyapo Kamoru Olarewaju;Kyung Ki Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.164-168
    • /
    • 2023
  • Accurate and reliable weather forecasts for temperature, relative humidity, and precipitation using advanced transformer models and IoT are essential in various fields related to global climate change. We propose a novel weather prediction device that integrates state-of-the-art transformer models and IoT techniques to improve prediction accuracy and real-time processing. The proposed system demonstrated high reliability and performance, offering valuable insights for industries and sectors that rely on accurate weather information, including agriculture, transportation, and emergency response planning. The integration of transformer models with the IoT signifies a substantial advancement in weather and climate modeling.

Development and Estimation of a Burden Distribution Index for Monitoring a Blast Furnace Condition

  • Chu, Young-Hwan;Choi, Tai-Hwa;Han, Chong-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1830-1835
    • /
    • 2003
  • A novel index representing burden distribution form in the blast furnace is developed and index estimation model is built with an empirical modeling method to monitor inner condition of the furnace without expensive sensors. To find the best combination of index and modeling method, two candidates for the index and four modeling methods have been examined. Results have shown that 3-D index have more resolution in describing the distribution form than 1-D index and ANN model produces smallest RMSE due to nonlinearity between the indices and charging mode. Although ANN has shown the best prediction accuracy in this study, PLS can be a good alternative due to its advantages in generalization capability, consistency, simplicity and training time. The second best result of PLS in the prediction results supports this fact.

  • PDF

Artificial Neural Network Modeling and Prediction Based on Hydraulic Characteristics in a Full-scale Wastewater Treatment Plant (실규모 하수처리공정에서 동력학적 동특성에 기반한 인공지능 모델링 및 예측기법)

  • Kim, Min-Han;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2009
  • The established mathematical modeling methods have limitation to know the hydraulic characteristics at the wastewater treatment plant which are complex and nonlinear systems. So, an artificial neural network (ANN) model based on hydraulic characteristics is applied for modeling wastewater quality of a full-scale wastewater treatment plant using DNR (Daewoo nutrient removal) process. ANN was trained using data which are influents (TSS, BOD, COD, TN, TP) and effluents (COD, TN, TP) components in a year, and predicted the effluent results based on the training. To raise the efficiency of prediction, inputs of ANN are added the influent and effluent information that are in yesterday and the day before yesterday. The results of training data tend to have high accuracy between real value and predicted value, but test data tend to have lower accuracy. However, the more hydraulic characteristics are considered, the results become more accuracy.

Multiple State Hidden Markov Model to Predict Transmembrane Protein Topology

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.1019-1031
    • /
    • 2004
  • This paper describes a new modeling method for the prediction of transmembrane protein topology. The structural regions of the transmembrane protein have been modeled by means of a multiple state hidden Markov model that has provided for the detailed modeling of the heterogeneous amino acid distributions of each structural region. Grammatical constraints have been incorporated to the prediction method in order to capture the biological order of membrane protein topology. The proposed method correctly predicted 76% of all membrane spanning regions and 92% sidedness of the integration when all membrane spanning regions were found correctly.

  • PDF