
Journal of Korean

Data & Information Science Society

2004, Vol. 15, No. 4, pp. 1019∼1031

Multiple State Hidden Markov Model to Predict  

Transmembrane Protein Topology1)

Sang-Mun Chi2)

Abstract

This paper describes a new modeling method for the prediction of 
transmembrane protein topology. The structural regions of the 
transmembrane protein have been modeled by means of a multiple state 
hidden Markov model that has provided for the detailed modeling of the 
heterogeneous amino acid distributions of each structural region. 
Grammatical constraints have been incorporated to the prediction method 
in order to capture the biological order of membrane protein topology. The 
proposed method correctly predicted 76% of all membrane spanning 
regions and 92% sidedness of the integration when all membrane spanning 
regions were found correctly. 

Keywords : grammatical constraints, multiple state hidden Markov 
model, transmembrane protein topology  

1. Introduction

Transmembrane proteins play important biological roles such as transport 

system of pumps and channels, receptors, energy transducers, and enzymes. The 

pharmaceutical industry have particularly interested in these proteins, since the 

membrane-bound receptors and channels have been proven to be therapeutic 

targets, and the membrane proteins often mediate acquired resistance to drugs. 

The large part (15% - 30%) of all genes in most genomes encode transmembrane 

proteins, and genome sequencing projects produce a large number of protein 

sequences. But, the intrinsic difficulties in crystallization of these proteins make it 

difficult to determine the structure of membrane proteins. Hence, the topology of 
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the vast majority of membrane proteins remains biochemically undetermined. 

Reliable computational methods for topology predictions are needed to provide the 

basis for further experimental analysis.

Previously, transmembrane protein structure predictions used local properties 

such as hydrophobicity (Kyte and Doolittle, 1982, Eisenberg, 1984, Engelman, 1986) 

and the abundance of positively charged residues on the cytoplasmic side of the 

membrane (Heijne, 1992). As more reliable data were available, several hidden 

Markov model (HMM) based procedures were developed which applied whole 

amino acid distributions in various regions of proteins for  prediction (Jones, 1994; 

Tusnady, 1998; Krogh, 2001). The advantages of neural network-based algorithms 

and combining prediction methods with multiple alignments are also used (Rost, 

1995; Casadio, 1996; Persson and Argos, 1997). 
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Figure 1. Transmembrane proteins. integral membrane proteins interact 

extensively with the hydrocarbon region of the bilayer.

HMM can be well suited statistical model for prediction of transmembrane 

protein topology because it can incorporate hydrophobicity, charge bias, helix 

lengths, and grammatical constraints into one model. The HMM based methods 

gave the best performance in the evaluation test (Moeller, 2001). But, the modeling 

capability of HMM may not be completely used in these method ; these methods 

used a common output probability for every states of HMM.  Hence, the previous 

HMM-based methods can not model changing statistical distributions of amino 

acids inside each modeling region of transmembrane proteins. The analysis of 

proteins in membrane showed that there was a distinct center-to-end 

heterogeneity in the distribution of amino acids of protein in membrane (Heijne, 

1994). The present work uses multiple states with state-dependant output 

probability in order to model the position-specific statistical properties of structural 

part. This work also incorporates grammar during the prediction of transmembrane 

protein topology in order to mimic the biological rule of membrane protein 

topology. Statistical analysis of amino acid distribution and cross-validation are 

performed to validate the effectiveness of the proposed modeling.
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2. Transmembrane protein modeling

2.1  Hidden Markov model for modeling transmembrane proteins 

Membrane lipids form a permeability barrier, and transmembrane proteins act as 

a transport system of pumps and channels, receptors, energy transducers, and 

enzymes that endow the membrane with selective permeability. The membrane 

lipids and proteins are illustrated in Figure 1 : (a) the hydrophilic units, also called 

the polar head group, are represented by a circle, whereas the hydrocarbon tails 

are depicted by straight or wavy lines, (b) the transmembrane proteins are 

symbolized by rectangle, (c) the loops between transmembrane helices are depicted 

by thick curves. 

Chemical property is different in each structural part of membrane proteins ; 

most of the amino acids in the membrane-spanning α  helices are nonpolar and 

only a very few are charged ; those parts that interact with aqueous environment 

are much more hydrophilic ; positively charged residues are prevalent in the 

cytoplasmic loops. These different properties are used to characterize each 

structural part of membrane proteins. The present work uses HMM to model 

variable-length amino acid sequence of the structural part of membrane proteins - 

inside and outside loop of a cellular membrane, membrane helix. The region of 

protein for modeling are defined differently for method to method, which will be 

compared in chapter 2.2.

...

Figure 2. The topology of the HMM used for the present work

start end

A HMM is a Markov chain where the output observation is a random variable 

X generated according to a output probabilistic function associated with each state. 

Briefly, HMM is a collection of states connected by transitions, which have two 

set of probability ; state transition probability and output probability. The HMM is 

very well suited for prediction of transmembrane helices because it can incorporate 

hydrophobicity, charge bias, helix lengths, and grammatical constraints into one 

model for which algorithms for parameter estimation and prediction already exist 

(Durbin, 1998). To build the HMM for the prediction, the parameters of the HMM 

can be estimated by using the maximum likelihood criterion. The iterative 

procedure, the Baum-Welch algorithm, is used to estimate both the output 

distributions and transition probabilities in a maximum likelihood sense. The 
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membrane protein topology is predicted using the Viterbi algorithm given the 

parameters and the sequence of amino acids. 

The present work uses left-to-right Bakis topology HMM to model each region 

of membrane proteins, as shown in Figure 2. Each of the HMM for modeling is 

allowed to have different number of states for the optimal prediction. Multiple 

states with their own output distributions are used to model the position specific 

statistical properties of each region, whereas an identical distribution is used in the 

previous HMM based methods (Jones, 1994; Tusnady, 1998; Krogh, 2001). 

2.2  Comparison of the modeling regions for several methods

Prediction methods devide transmembrane protein into several regions for 

modeling and use different HMM structures. These definitions of region are 

considered on three prediction methods, MEMSAT (Jones, 1994), HMMTOP 

(Tusnady, 1998), and TMHMM (Krogh, 2001), which were based on HMM and 

showed good performance in the test (Moeller, 2001).

Ho

Figure 3. Configuration of modeling units in MEMSAT
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The MEMSAT has modeled membrane proteins with five modeling units as can 

be seen from Figure 3 : Li (inside loop), Lo (outside loop), Hi (inside helix end), 

Hm (helix middle), and Ho (outside helix end). The number of residues taken to 

be in the helix end caps is arbitrarily taken as being four. Each of the structural 

classes is modeled with one distribution of amino acid residues.  The MEMSAT 

has used dynamic programming algorithm to maximize the sum of log likelihoods 

over the sequences. In fact this method is one step of the HMM, i. e. finding the 

best state sequence for the amino acid sequence if the parameters and the models 

are given. 

The HMMTOP also has used five modeling units as illustrated in Figure 4 : 

inside loop, inside helix tail, membrane helix, outside helix tail and outside loop. 

The helix parts are embedded in the membrane. The term loop means the longer 

part of a sequence outside the membrane, which can form a domain or a simpler 

structure. The tail is the elongation of the membrane helix, and it can be followed 

by a loop or another tail, forming a short loop interacting with the outside or 

inside part of the membrane. Helix tails are not in the membrane, helix ends are 

the very ends of helices located in the membrane. Loops are modeled with 

non-fixed length (NFL) states. From an NFL state, there are only two possible 

transitions: one to the same state and the other to the next structural part. 

Common distribution of amino acid residues is used for modeling the NFL states. 

Helix and tails are modeled with fixed length (FL) states. There are MAXL states 

to limit the length of the residues of each structural part. The only transition to 

the next state is possible from each of the first MINL states. In each state 

between MINL and MAXL, there is an another possible transition from the 

current state to next modeling unit. Like the MEMSAT, common distribution of 

observation-symbol in FL states is used in the HMMTOP. 

Figure 5 shows the layout of the models in TMHMM. Each box in the drawing 

corresponds to a HMM designed to model a specific region of a membrane 

protein. These models contain several HMM states in order to model the lengths 

of various regions. The arrows show how transitions between models can be 

made such that they obey the grammatical structure of helical transmembrane 

proteins. The models labeled "globular" in Figure 5 are identical and consist of 

just one state with a transition to itself and to a loop model. To capture the 

topogenic signal of the proteins, the residues close to the membrane are modeled 

in the models labeled "loop" and "cap". Loops of lengths up to 20 residues are 

modeled by loop model, whereas longer loops have to use the globular state. All 

of the 20 loop states of a loop model have the same distribution of amino acid 

residues, but the three loop models are different. The cap models simply model the 

five first or last residues of the transmembrane regions. The model for the core
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membrane

Figure 5. Configuration of modeling units in TMHMM
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of the transmembrane helices is an array of 25 identical states with the possibility 

of jumping from one of the states to many of the states down-stream. This 

topology models sequences of lengths between five and 25, witch translates to 

helix lengths between 15 and 35 when the caps are included.

3. Modeling structural parts with multiple states and grammar

All of the methods described in 2.2 used only one output probability for 

modeling the regions of transmembrane protein. But, analyses of membrane 

proteins show that the amino acid distributions in membrane proteins have 

different characteristic biases with the position of each structural part. As a result 

of the tendency for the buried residues to be more polar than the lipid-exposed 

ones, there is a distinct center-to-end heterogeneity in the distribution of apolar 

amino acids, with the aromatic residues Phe(F), Tyr(Y), and Trp(W) concentrated 

at the ends and the aliphatic residues Leu(L), Ile(I), Val(V) more often found near 

the center (Heijne, 1994).

Multiple states with state-dependent output probability distribution are essential 

for modeling this changing amino acids distribution with the position of amino 

acids in each structural part. Chapter 4.2 will present more statistical analysis 

about the center-to-end heterogeneity in the distribution of amino acid. The 

present work has modeled multiple states with their own different output 

distributions for each structural parts of membrane protein. The present work uses 

simple natural structural parts shown in Figure 1 : inside (cytoplasmic) loop, 

outside loop, membrane helix.
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Figure 6. Grammar for the membrane protein topology
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Grammar has been incorporated to the prediction method in order to capture the 

biological order of membrane protein topology. As illustrated in Figure 1, 

membrane proteins follow a "grammar" in which cytoplasmic and non-cytoplasmic 

loops have to alternate. The present work uses this natural structure of 

transmembrane proteins, i. e. inside loop is followed by helix, helix is followed by 

outside loop and outside loop is followed again by helix. Figure 6 shows this 

grammatical structure of membrane protein topology. The arrows show how the 

transitions between structural parts can be made ; The existence of the first loop 

alone is excluded in the present work, although it is possible in Figure 6. The 

topology of HMM illustrated in Figure 2 has been used for each structural parts, 

inner loop, helix, and outer loop. The grammar constrains possible topology, and 

thereby possible transmembrane protein topology. To find the most probable 

topology, prediction methods search the sequence of structural parts 

Ŵ=w 1w 2…wm  that has the maximum posterior probability P(W |X)  for the 

given amino acid sequence X= x 1x 2…xn  . That is,

Ŵ=
argmax
W

P(W |X)=
argmax
W

P(W )P(X|W )
P(X)

=
argmax
W

P(W )P(X|W )

   (1)

where, P(X|W )  is a probability of amino acid sequence given sequence of 

structural parts, i. e., given the sequence of HMMs for the structural parts. 

Each of the HMM for the structural parts is inserted into the finite state 

grammar (FSM) in Figure 6. The finite state HMM network that encodes all the 

legal sequence of structural parts Ŵ=w 1w 2…wm  can be constructed based on this 

expansion procedure. The decoding process is achieved by performing a 

time-synchronous Viterbi search on this composite finite state HMM. Since the 

FSM is used in this work, the following value is used instead of the true 

probability of a sequence of structural parts.
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P(W )=P(w 1w 2…wm)= { 1 for allowed sequence in Figure 60                  for otherwise
        (2)

4. Experiments and evaluation

4.1  Evaluation criteria and database

The most successful methods attempt to predict the full topology of membrane 

proteins, i. e. the total number of transmembrane helices and their in/out 

orientation relative to the membrane. There are several types of mis-prediction 

that can occur when predicting the topology of a membrane protein. The simplest 

errors are over-predictions and under-predictions, i. e. predicting a transmembrane 

region where none is present or missing a true transmembrane region. Another 

type of error is that two adjoining transmembrane regions are joined together, so 

that they are predicted as a single long region, which we will term as a "false 

merge". Similarly, a long transmembrane region can be falsely predicted as being 

two short regions, here termed a "false split". Of course, all the helices can be 

predicted correctly, but the overall topology can be predicted as the inverse of the 

real topology, i. e. an inverted topology. 

For an membrane spanning region (MSR) to be evaluated as correct, it must 

share at least nine residues with the reference annotation's MSR in the test 

(Moeller, 2001). This evaluation rule is also adopted in the present work. Each 

program was rated by two values. Firstly, it was rated by the percentage of 

predicted proteins whose all MSRs are found correctly. Secondly, it was rated by 

the percentage of the correct sidedness of the protein's membrane integration.

To benchmark the performance of transmembrane protein prediction programs, it 

is necessary to use a test set of sequences with experimentally confirmed 

transmembrane regions. The source data for this work were a set of documented 

transmembrane proteins extracted from Release 23.0 of SWISS-PROT (Moller, 

2001). This test set contains 188 proteins with 883 MSRs that have been 

determined from either their elucidated structures or by fusion experiments. These 

data will be used for the experiments in table 2. The part of newly updated 

database was used for the present work from the database A, B, and C (Moeller 

2001). The content of this set is almost same with the database in previous 

database, but some more error correction. The data with  explicit annotated 

orientation will be used for the experiments in table 1 and 3, this test set contains 

184 proteins with 870 MSRs.
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4.2  Statistical analysis on the distribution of amino acids

The present work used chi-square test to determine whether there was a 

distinct center-to-end heterogeneity in the distribution of amino acids. Different p  

segments in structural parts of transmembrane proteins were obtained by dividing 

the structural part with p  equivalent length. The null hypothesis H 0  for this test 

is that these segments all have the same distribution.

p i1= p i2=…= p ip,  i=1,2,…,20                           (3)

where, A 1,A 2,…,A 20  represent 20 types of amino acids,  Xj  is a random 

variable for the j-th segment and P{Xj∈Ai}= p ij. 

This is exactly the problem of testing the equality of p  independent multinomial 

distributions. Let n 1,n 2,…,np  be the number of observations on X 1,X 2,…,Xp, 

respectively. Since p ij's are not known, these are estimated form the data. The 

maximum likelihood estimates for the common probability under 

H 0:p i1= p i2=…= p ip,i=1,2,…,20  are

p î=
∑
p

j=1
Xij

∑
p

j=1
nj

,  i=1,2,…,20,                          (4)

where, Xij  is the number of observations on Xj  that is amino acid Ai. 

If n 1,n 2,…,np  are sufficiently large, the random variable

V= ∑
p

j=1
∑
20

k=1[
(Xij-n jp î)

2

njp î ]                           (5)

is approximately chi-square random variable with p(20-1)-(20-1)=19(p-1)  

degree of freedom. H 0  is rejected at level α  if the computed value of χ
2  is > 

χ 219(p-1),α .
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Table 1. Chi-square homogeneous test for the structural 

parts of membrane protein

Structural part v

Membrane helix 420.13

Inner loop 262.35

Outer loop 208.28

In table 1, five segments ( p=5) from each of the structural part is used. Since 

the values v= ∑
5

j=1
∑
20

k=1[
(x ij-njp î)

2

n jp î ]  of all structural parts are larger than 
χ 276,0.001=119.85, H 0  is rejected at level 0.001. This analysis result shows that 

the distributions of five segments of each structural parts are not the same. This 

result supports the requirement of multiple states with their own output probability 

for the detailed modeling of each structural part. 

Figure 7 : The relative frequency of amino acids of membrane helix for five 
segments.
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Figure 7 shows well-known tendency that the relative frequencies of amino 

acids are higher at hydrophobic residues, A, F, G, I, L V than at polar and 

charged residues, K, R, D, E, C, H, N, Q. In addition, the high frequencies of A, 

F, G, I, V at the center segments and D, E, W, Y at the end segments are in 

agreement with Heijne(1994). Thus, this figure also shows the usefulness of using 

multiple output probability for the membrane helix modeling. But, for the inside 

and outside loop, no decisive pattern of bias for the amino acid distribution with 
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position was found. Further works should be needed to effectively model the loops, 

which form a domain or a structure in cytoplasmic side and outer membrane.

4.3  Comparison results of several methods

The proposed method will be compared with the results in Table 2, which 

shows the performance of HMM based methods on all membrane spanning regions 

(MSRs) in the previous evaluation test (Moeller, 2001). The effectiveness of the 

proposed modeling is validated step by step. The first experiment, "One output 

probability", uses single model with one state for modeling units such as inner 

loop, membrane helix, outer loop. Since this modeling method can not model the 

position-specific heterogeneity in the distribution of amino acids, the performance 

of this method is low as can be seen in Table 3. 

Table 2. Topology prediction performance of several methods

Method All MSRs found Additional correct sidedness

TMHMM-Retrain 69% 79%

TMHMM 2.0 68% 70%

TMHMM 1.0 67% 72%

MSEMSAT 1.5 53% 77%

HMMTOP 44% 82%

Table 3. Topology prediction performance of the proposed method

Method All MSRs found Additional correct sidedness

One output probability 36% 82%

Multiple states 76% 92%

Multiple states (cross-validation) 61% 86%

The proposed method, Multiple states, uses multiple state HMM in order to 

model the changing distribution of amino acids with the position of amino acid. 

Outer loops of lengths up to 15 (half of the total outer loops) are modeled with 3 

state HMM, while the outer loops of lengths larger than 16 are modeled with 16 

state HMM. Similarly, 3 state HMM for inner loops of lengths up to 20 (half of 

the total inner loops), 21 state HMM inner loops of lengths larger than 21, 12 
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state HMM for membrane helices of lengths up to 20 (half of the total membrane 

helices), 21 state HMM for membrane helices of lengths larger than 21. As can be 

seen from the table 3, this method gives improved results than the "One output 

probability" and the previous methods in table 2. The proposed method can predict 

76% of the membrane protein's all MSRs correctly and gives marked improvement 

of correct sidedness, 92% prediction rate for correct sidedness by including the 

grammar into the search of probable membrane protein topology.

Because of the lack of independent test data, tenfold cross-validation was 

performed. The test set of 184 membrane proteins was partitioned into ten subsets 

with 18 or 19 proteins in each. Cross-validation was done by training on all 

sequences in nine subsets, and testing the accuracy on the subset left out from 

training. The fourth row of Table 3 shows the results using the cross-validation. 

This results show slightly better performance than the previous methods (35 ~ 

60% for all MSRs found, 36 ~ 83% for additionally correct sidedness in 

Moeller(2001)).

5. Conclusion

The proposed method for the prediction of transmembrane topology gave 76 % 

correctness for the prediction of all MSRs and 92% prediction rate for correct 

sidedness. These experiments were run on a set of well-characterized 

transmembrane proteins. The performance of the proposed method was higher than 

any other HMM based methods for the prediction of all MSRs and their sidedness. 

In particular, marked improvement of the determination of the sidedness of 

transmembrane proteins was obtained by including grammar into the search of 

probable membrane protein topology.

The proposed method uses multiple states with their own distribution in order 

to model the position-specific heterogeneity in distribution of amino acids while an 

identical distribution was used for modeling structural parts of membrane proteins 

in the previous HMM based methods. From the chi-square test and the relative 

frequency of amino acids for each segments of membrane helix, the 

position-dependent heterogeneity in the distribution of amino acids can be seen. 

These analyses explain the reason why the use of multiple output probability 

could give higher performance than one output probability. 

Although multiple states were also used for the modeling of inner and outer 

membrane protein region in this work and gave a improved result, there remains 

some uncertainty as to structure of inner and outer loop. Further analysis of loop 

structure will be needed for the fine-tuning of HMM topology.
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