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Abstract: A novel index representing burden distribution form in the blast furnace is developed and index estimation model is built 
with an empirical modeling method to monitor inner condition of the furnace without expensive sensors. To find the best 
combination of index and modeling method, two candidates for the index and four modeling methods have been examined. Results 
have shown that 3-D index have more resolution in describing the distribution form than 1-D index and ANN model produces 
smallest RMSE due to nonlinearity between the indices and charging mode. Although ANN has shown the best prediction accuracy 
in this study, PLS can be a good alternative due to its advantages in generalization capability, consistency, simplicity and training 
time. The second best result of PLS in the prediction results supports this fact. 
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1. INTRODUCTION 

 
A blast furnace is essential equipment in an iron-and-steel 

making process since it produces pig iron in liquid phase as a 
base material for various final steel products. However, 
characteristics of the blast furnace process have not 
completely identified due to its complexity in physicochemical 
phenomena and excessively huge scale [1]. In particular, 
severely high inner temperature of the equipment makes it 
difficult to use sensors for measurement of various states. 
Although optical sensors based on an ultrasonic wave or laser 
are currently used as a measuring method, these methods still 
have disadvantages in costs, time, and accuracy. Therefore, a 
novel state-estimation method which replaces the direct 
measurement using physical sensors is required. 

In this study, a method which estimates a burden 
distribution form in a blast furnace based on a data-driven 
model is proposed. The burden distribution form is very 
important in evaluating blast furnace condition because 
direction of high-temperature blast rising from bottom of the 
furnace is determined by the distribution form. Despite the 
importance of the burden distribution form, it has not been 
correctly measured due to difficulty in using sensors. 
Therefore, we propose the two-stage strategy to estimate it 
from charging program which can be manipulated. In the first 
stage, a burden distribution index is devised so that the form 
can be correctly reproduced from the index value. Then, in the 
second stage, empirical models between the index and 
charging mode are built to predict the actual index value from 
the charging mode. 

Because we do not know which index and which modeling 
method show the best description for the burden distribution 
form and prediction performance, we try several combinations 
of the candidates for the index and modeling method. For the 
index, two candidates are considered: 1-D index and 3-D 
index. 1-D index is simple but does not have satisfactory 
resolution for the actual burden distribution form. On the other 
hand, 3-D index is more complex due to its increased 
dimension but has advantage in describing the form more 
accurately. As the modeling methods, 4 kinds are considered: 
partial least squares (PLS), artificial neural networks (ANN), 
polynomial PLS, and neural networks PLS (NNPLS) [2-5]. 
PLS is considered as a linear modeling method which can 
handle multi-collinearity. ANN is a nonlinear modeling 
method which has flexibility in determining modeling 

structure. Polynomial PLS and NNPLS are nonlinear PLS 
methods which have nonlinear inner relationship between 
principal components of predictor and predicted variables. 
Note that these two modeling methods are considered as a 
compromise between PLS and ANN. We will find out the best 
combination of the index and modeling method based on 
description capability of the index and prediction performance 
of the completed model. 

This paper is organized as follows. In section 2, overview 
of a blast furnace operation is explained. Then, background of 
the development of a burden distribution index and its 
procedure is shown in the section 3. In section 4, various 
modeling methods are examined to find out the best one with 
the minimum RMSE value for test data. Finally, conclusions 
are given in section 5. 
 

2. OVERVIEW OF A BLAST FURNACE 
OPERATION 

 
A blast furnace operation is the most important in that it 

produces base material for final steel products. In this 
operation, cokes as both reductant and fuel are charged into 
the furnace from the top together with iron ores according to a 
charging program. Figure 1 shows outline of the blast furnace 
operation. Charging of input materials is periodically 
performed and the charged materials slowly go down. 
Meanwhile, high-temperature blast is blown into the furnace 
from the bottom to provide heat source for melting of the iron 
ores. The flow of the blast and the fall of the charged materials 
are countercurrently processed, and cohesive zone is generated 
in the middle of the furnace by phase equilibrium phenomenon. 
During this process, oxygen of the iron ore is taken by the 
blast gas through a combustion reaction and pure pig iron is 
produced at the bottom of the furnace. The blast gas after 
going through the charged materials leaves the furnace as a 
blast furnace gas (BFG) which is recycled as fuels. Finally, the 
pig iron in the liquid phase is intermittently tapped from the 
bottom of the furnace to be used for following processes. 

Due to its complexity in physicochemical phenomena and 
enormous size, the static and dynamic behaviors inside of the 
furnace have not been clearly revealed. In addition, severely 
high temperature of the furnace is an obstacle to using sensors 
to monitor the inner condition. Currently, the whole furnace 
condition is inferred from measurement results of surface 
condition although expensive heat-resistant rods with 
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measuring sensors are occasionally inserted into the inside of 
the furnace to directly measure the inner condition. 
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Fig. 1 Blast furnace operation. 
 
The burden distribution form usually measured with 

ultrasonic wave or laser provides lots of information on the 
furnace condition. Because the high-temperature blast gas 
flows through interstices of coke pile, direction of the gas is 
critically determined by the burden distribution form. For 
example, if center side has more coke pile than wall side, the 
flow of the blast gas is biased into the center side (Case 1). On 
the other hand, if wall side has more coke pile than center side, 
the flow of the blast gas is biased into the wall side (Case 2). 
For Case 1, the pig iron finally produced by the operation 
decreases due to reduction of contacting area between the blast 
gas and iron ores, while heat load of the wall is relieved. Case 
2 is the opposite situation of the Case 1. In this case, 
production rate of the pig iron increases while loss in 
equipment costs is occurred due to increased heal load on the 
furnace wall. Therefore, to know the burden distribution form 
is very important to effectively monitor and control the inner 
condition. 
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Fig. 2 Determination of gas direction according to the burden 
distribution form. 

 
Until now, the form has been measured by optical sensors 

such as ultrasonic wave or laser. However, these methods also 
require considerable costs and time like other direct measuring 
methods. Therefore, it is needed to estimate the form from 
models which allows us to know the form in simple and fast 
way without additional costs. For this purpose, two kinds of 
works should be done. First one is to develop an index which 
correctly represents the burden distribution form, and the 
second one is to build an empirical model between the index 
and manipulated variables so that we can determine the form 
from the model. 
 

3. DEVELOPMENT OF A BURDEN 

DISTRIBUTION INDEX 
 

As a first step for estimation of the burden distribution form, 
an index which quantifies the form is developed. The 
developed index is used as a response variable for the index 
estimation model. It is required that the index should be 
simple and uniquely describe the burden distribution profile to 
radial direction. We propose two candidates for the index: 1-D 
and 3-D indices. While the 1-D index represents the profile 
form with only one number, the 3-D index represents with 
combination of three numbers. Equations (1) through (5) 
express these two indices, respectively. 
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In the equation (3), (4) and (5), SORT, SCRT and SOCR 
mean “Sum of Ore Relative Thicknesses”, “Sum of Coke 
Relative Thicknesses” and “Sum of Ore to Coke Ratios”, 
respectively. The indices have been devised based on the idea 
shown in Fig. 3. To consider all positions of the 
radial-direction profile, we divided it into 51 slices. Then, the 
three kinds of relative thickness sums have been proposed. 
SORT and SCRT reflect overall bias of ore and coke layers to 
wall or center side. If all thicknesses of ore or coke layer at the 
51 sliced positions are the same, SORT or SCRT becomes 1. 
Otherwise, if thickness at center side is larger than wall side, 
SORT has a value larger than 1, and vise versa. On the other 
hand, SOCR considers ratios of ore and coke layer at all sliced 
positions. Therefore, if the thickness of ore layer is overall 
larger than coke layer, SOCR has a value larger than 1. 
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Fig. 3. Slicing of burden distribution profile. 
 

The 1-D index is defined as the ratio of SORT and SCRT. It 
is simple since the distribution form can be described only 
with one number. However, it does not have exact one-to-one 
relationship with the form because many distribution forms 
can be reproduced from one value. For instance, the ratio of 
SORT and SCRT can be maintained as the same value while 
SORT and SCRT have different values (i.e. the burden 
distribution profile of each layer has different shape). 
Nevertheless, the 1-D index has uniqueness to certain extent 
due to typical pattern of the operation. 

The 3-D index is a combination of the three relative 
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thickness sums. Since it considers them independently, more 
information on the profile form can be given to us. In addition, 
the uniqueness of the index can be guaranteed since only one 
shape can be constructed from one combination of the three 
values despite increase of dimension. To select better index 
from the two ones which provide correct reproducibility and 
prediction accuracy, we will further examine the performance 
of the two indices from the viewpoint of modeling in the next 
section. 

 
4. EMPIRICAL MODEL BUILDING BETWEEN 

THE INDEX AND CHARGING MODE 
 
4
 

.1 Charging mode 

Since the purpose of this study is to estimate the index 
value from a model without a measurement sensor, an 
empirical model is built based on historical data. In the model, 
charging mode is used as predictor variables because it 
critically determines the burden distribution form. Charging 
mode is a program in which the quantity of charged materials 
and charging positions are specified. Figure 4 shows how the 
charging mode is defined together with the structure of 
charging equipment. In this figure, ores and cokes are charged 
through the rotating chute which has 10 notch numbers 
depending on its tilted angle from the center axis. As the notch 
number decreases, the angle increases and the charged 
materials fall near the wall side. Although the burden 
distribution form is mainly determined by the charging mode, 
it is possible that the different form can be generated with the 
same charging mode. This problem is caused by large scale of 
the furnace, collision between the charged materials and the 
furnace wall, and rolling of the charged materials on the 
previous burden. This means that direct guess for the burden 
distribution form from the charging mode is difficult and thus 
modeling between them is required. 
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Fig. 4 Structure of charging equipment and definition of 
charging mode. 

 
4.2 Empirical modeling based on linear and nonlinear 
regression techniques 
 

With the two kinds of developed indices, we build 
empirical models based on regression methods. To find out the 
best modeling method fitted to the characteristics of the 
relation among the variables, we examine four modeling 
methods: PLS, ANN, polynomial PLS, and neural net PLS. 
The reason for the selection of the four modeling methods is to 
check nonlinearity and multi-collinearity among the variables. 
Besides, simplicity and consistency are also important criteria 
for selection of the final method. Brief reviews for these four 
methods are given in the followings. 

 
4.2.1 PLS (Partial Least Squares) 
 

PLS is the most advanced one in the linear regression 
methods from the viewpoint of handling multi-collinearity 
among variables. Unlike the multiple linear regression (MLR) 
method, PLS projects both X and Y data on a latent space 
generated to the direction of largest variance to perform 
regression. The optimal number of principal components 
(PCs) used for predictor variables in the regression are 
determined by various criteria such as cross-validation. Based 
on the selected PCs, a regression model is built so that 
correlation between PCs of X and Y is maximized. As an 
algorithm for PLS, NIPALS and SIMPLS are the most widely 
used. [6, 7] 

 
4.2.2 ANN (Artificial Neural Networks) 
 

ANN is a representative nonlinear regression method that 
imitates a neural processing of human brain. It has flexibility 
in determining model structure, and thus any model can be 
built by adjusting its structure and parameters [8, 9]. The 
general structure of ANN is shown in Fig. 5. It is the most 
distinguished feature of the ANN that nonlinear transformation 
is performed via the hidden nodes. Although lots of training 
algorithms have been proposed to estimate parameters given 
to each arc connecting nodes, back-propagation algorithm is 
known to be the most efficient one to train a multi-layer 
perceptron such as Fig. 5. In this study, we use the 
Levenberg-Marquardt algorithm which is one of the best 
back-propagation algorithms as a training method. 
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Fig. 5 General neural networks structure. 
 
4.2.3 Polynomial PLS 
 

To deal with nonlinearity in data structure together with 
multi-collinearity problem, various nonlinear regression 
techniques have been considered in inner relationship of PLS 
algorithm. These methods called as nonlinear PLS (NPLS) 
have compromising properties between PLS and ANN. 
Therefore, advantages of both methods can be seen in the 
NPLS. The most simple method that can be used for this 
purpose is a polynomial equation with orders equal to or larger 
than 2 [10]. Despite lack of freedom in changing model 
structure, polynomial equations can be effective for weak 
nonlinearity. In this study, the order of the equation is 
determined so that RMSE of the polynomial PLS model is 
minimized. Schematic diagram of the NPLS with polynomial 
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inner relationship is shown in Fig. 6. 
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Fig. 6 Structure of polynomial PLS. 

 
4.2.4 Neural Network PLS (NNPLS) 
 

NNPLS can handle even severe nonlinearity by employing 
ANN structure in the inner relation of PLS. By using neural 
network structure in the inner relation, freedom in structural 
change of the model increases compared to polynomial PLS. 
NNPLS takes advantages of both PLS and ANN approaches. 
Therefore, it has increased model robustness and smaller 
prediction variance. This property of NNPLS comes from 
reduction of a MIMO network regression to a number of SISO 
network regression problems [11]. Although NNPLS has less 
flexibility in determining model structure than ANN, it can 
solve over-fitting problem of ANN to a certain degree due to 
this decomposition property. For this reason, NNPLS is 
popularly used instead of ANN or PLS when nonlinearity 
should be considered together with generalization capability. 
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Fig. 7 Structure of NNPLS. 
 
4.3 Results and analysis 
 
 We examined 8 cases as combinations of two developed 
indices and 4 modeling methods to select one with the 
minimum RMSE and the best reproduction capability. We 
shows 4 results related to the 1-D index followed by another 4 
results related to the 3-D index. 
 
4.3.1 Data validation 
 

To build the index estimation model, 83 charging mode data 
were gathered. For corresponding charging mode data, the 
values of the two kinds of indices were calculated based on the 
past data measured with ultrasonic wave. For these data, data 
validation using PCA was performed to exclude abnormal data. 
Figures 8 and 9 show score and loading plots resulted from the 
application of PCA. Figure 8 shows that 67th and 83rd data are 
evidently outside of the ellipsoid representing 95% confidence 
level. Therefore, we did not include these two data and used 
only 81 data in the study. The 81 data were divided into 60 
modeling and 21 test data. 

Since rotation numbers at certain notch numbers do not 
change, variance information for the variables cannot be 
reflected in the model. Therefore, we considered only the 19 
variables with nonzero variance for modeling. In Fig. 9, we 
can see that the loading values of the 19 variables are far from 
the center position. This means that all 19 variables can plays 
a significant role in explaining data variance for the index 

estimation model. 
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Fig. 8 PCA Score plot composed of the first two PCs. 
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Fig. 9 PCA loading plot composed of the first two PCs. 
 
4.3.2 Estimation results for test data 
 

With the modeling data, index estimation models based on 
the four empirical modeling methods have been built. In each 
modeling, both of 1-D and 3-D indices were examined as 
response variables to select more predictive index. After 
completing the models, data predicted by the models were 
compared with real data with 21 test data. Fig. 10 shows the 
prediction results for 1-D index. In this figure, we can see 
visually that the data predicted by ANN model have the best 
prediction performance. It is also notable that PLS shows 
better prediction accuracy than the two NPLS methods. Fig. 
11 which shows the predicted data for the 3-D index produced 
similar results to the cases of 1-D index. For all three elements, 
ANN model showed the best prediction results and the second 
best was the PLS model. 

From these results, two facts can be inferred. First, 
superiority of ANN model to the other models in the 
prediction results means that there is nonlinearity between the 
charging mode and 1-D index. Besides, its flexibility in 
determining model structure may contribute to the outstanding 
prediction results. Second, it has been proved that PLS has a 
good generalization capability and robustness in predicting 
unknown data. Therefore, we can see that PLS can be applied 
to any data except severely nonlinear ones to achieve an 
empirical model with acceptable prediction performance. 
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Fig. 10 Estimation results for the 1-D index. 
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Fig. 11 Estimation results for the 3-D index. 
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Finally, for the case of 3-D index, it was a noticeable result that 
the last element of the 3-D index (SOCR) showed the largest 
gap between predicted and real data for all models. The reason 
for this result is that the ratio of ore thickness to coke thickness 
at each position is not definitely affected by charging mode. 
Nevertheless, SOCR is an important criterion to evaluate 
overall shape of coke and ore layers, and can be predicted 
satisfactorily with ANN model. 

The RMSE values resulted from the predictions for those 
eight cases are shown in Table 1. Note that mean RMSE values 
for three elements have been used for comparison with the 1-D 
index. In this table, ANN produces the least RMSE values for 
both of the indices and the RMSE values by PLS are the second 
best as Figs. 10 and 11 previously showed. Besides, from this 
table, we can see that the combination of ANN and 3-D index 
gives the smallest RMSE. This result is desirable because 3-D 
index has exact one-to-one relationship with burden 
distribution form and nonlinearity of data can be effectively 
handled by ANN. However, it should be noted that training 
results of ANN can be different depending on initial parameter 
values because the training procedure is equivalent to solving a 
nonlinear optimization problem. Therefore, PLS can be a better 
alternative to ANN from the viewpoint of consistency as well 
as simplicity and training time. 
 

Table 1 RMSE values for two indices and four modeling 
methods. 

 
 RMSE 
 PLS ANN Poly. PLS NNPLS 

1-D index 0.6730 0.4781 0.7348 0.7418 
3-D index 0.6586 0.4465 0.7660 0.7070 
 

5. CONCLUSIONS 
 

In this study, we developed a novel index representing the 
burden distribution form and estimated it with an empirical 
model to effectively monitor inner condition of the blast 
f rnace without expensive ultrasonic sensors. Of the two kinds 
of indices, 3-D index had better accuracy in uniquely 
describing the distribution form. From the viewpoint of 
prediction accuracy, ANN showed the best performance among 
the four proposed empirical modeling methods for both indices. 
The results means that the indices have nonlinear relationship 
with charging mode used as input variables for the models. By 
comparing RMSE values of eight cases generated by 
combining the two indices and four modeling methods, 
combination of 3-D index and ANN has been revealed to be the 
best. However, the disadvantages of ANN in consistency, 
simplicity, and training time drive us to use PLS as the second 
best modeling method. Based on the results of this study, we 
can further consider an optimization problem in which the 
optimal charging mode can be found out so that productivity 
and equipment costs are optimally compromised. This problem 
will be dealt with in the future study. 
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