• 제목/요약/키워드: Prediction Accuracy

검색결과 3,785건 처리시간 0.033초

DMT를 이용한 부산신항 점토의 비배수 전단강도 추정 (Evaluation of Undrained Shear Strength of Busan New-port Clay by DMT)

  • 홍성진;신동현;김동휘;정상진;이우진
    • 한국지반공학회논문집
    • /
    • 제23권7호
    • /
    • pp.87-98
    • /
    • 2007
  • 본 연구에서는 DMT를 이용한 비배수 전단강도를 파악하기 위하여 부산신항 점토층에 DMT 시험, 베인전단시험, $CK_0U$ 삼축압축시험을 실시하였다. 시험결과 정규화한 비배수 전단강도비는 삼축시험의 경우 $S_{u(CKU)}/{\sigma}'_v=0.30{\sim}0.35$, 베인전단시험의 경우 ${\mu}S_{u(VST)}/{\sigma}'_v=0.20{\sim}0.22$로 나타났다. 본 연구에서는 현장 베인전단시험 및 삼축압축시험 결과와의 비교를 통해, DMT를 이용하여 비배수 전단강도를 추정하는 두 가지 방법을 제안하였다. 첫 번째는 $S_u/{\sigma}'_v$와 횡방향 응력지수의 관계를 이용하는 방법이고, 두 번째는 $N_c-I_D$ 또는 $N_c-E_D$ 관계로부터 비배수 전단강도를 추정하는 방법이다. 베인전단시험 및 삼축시험 결과와 두 가지 추정방법을 비교한 결과, $N_c-I_D$ 또는 $N_c-E_D$ 관계를 이용한 방법이 $K_D$ 이용하는 방법보다 비배수 전단강도를 정확하게 추정하는 것으로 나타났다. 이것은 $I_D$$E_D$가 토질상태를 반영하는 $p_1-p_0$항을 포함하고 있어, $N_c$를 이용하는 방법이 토질을 고려한 비배수 전단강도 추정을 할 수 있기 때문으로 판단된다.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

MaxEnt 모형을 활용한 백두대간에 자생하는 주요 밀원수종인 음나무, 피나무, 쪽동백나무의 서식지 적합성 평가 (Evaluation of Habitat Suitability of Honey Tree Species, Kalopanax septemlobus Koidz., Tilia amurensis Rupr. and Styrax obassis Siebold & Z ucc. in the Baekdudaegan Mountains using MaxEnt Model)

  • 심형석;이민기;이창배
    • 한국산림과학회지
    • /
    • 제111권1호
    • /
    • pp.50-60
    • /
    • 2022
  • 본 연구는 백두대간에 자생하는 주요 밀원수종 3종(음나무, 피나무, 쪽동백나무)을 대상으로 서식지 적합성 분석을 수행하였다. 백두대간 내 밀원수종 서식지 적합도 분석을 MaxEnt를 이용하여 수행한 결과, 모형의 예측정확도 AUC값은 음나무 0.747, 피나무 0.790, 쪽동백나무 0.755로 나타났다. 밀원수종의 서식지 적합도에 가장 영향을 많이 미치는 변수로 음나무와 피나무는 고도, 연평균 기온, 경사도 순으로 나타났으며, 쪽동백나무는 연평균 기온, 고도, 연평균 강수량 순으로 나타났다. 본 연구에서 분석된 대상수종 모두 지형인자인 고도와 기후인자인 연평균 기온이 가장 중요한 인자로 나타났으며, 이는 고도와 기온이 대상 수종의 분포 패턴을 설명하는데 매우 핵심적인 인자임을 나타낸다. 본 연구는 임업소득 향상을 위한 고부가가치 아이템인 산림양봉의 필수자원인 주요 밀원수종들의 서식지 적합성 분석을 통해, 백두대간 내 주요 밀원수종의 관리와 밀원림을 조성할 수 있는 잠재력이 높은 중요 적합지들에 대한 자료를 제공한다. 향후 밀원수종 분포에 영향을 미치는 토양, 건조도 등의 무생물적 인자와 종간경쟁 등의 생물적 인자를 종합적으로 고려하여 모형의 정확도를 높이는 연구가 추가로 진행되어야 할 필요가 있다.

딥러닝 기반 국내 지반의 지지층 깊이 예측 (Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data)

  • 장영은;정재호;한진태;유용균
    • 한국지반공학회논문집
    • /
    • 제38권3호
    • /
    • pp.35-42
    • /
    • 2022
  • 지반조사방법 중 표준관입시험 결과인 N치를 통해 알 수 있는 지반 지지층의 깊이는 각종 지반 구조물의 설계를 위한 기본적인 지반 정보를 제공하는 중요한 지표이다. 이러한 지반조사 결과는 시간과 비용 측면을 고려해 간헐적으로 수행될 수밖에 없으며, 그 결과는 현장 지반의 대표성을 갖게 된다. 그러나 지반 내에는 다양한 지층 변동성 및 불확실성이 존재하므로 간헐적인 현장조사를 통해 지반의 특성을 모두 파악하는 것은 어렵다. 따라서 시추공 정보로부터 미계측 지점을 예측하기 위한 방법들이 제시되어 왔으며, 대표적인 방법으로는 공간보간기법인 크리깅(Krigging), 역거리가중법(IDW)등이 있다. 최근에는 보간기법의 정확성을 높이기 위해 지반분야와 딥러닝 기술을 접목한 연구들이 수행되고 있다. 본 연구에서는 약 2만 2천공의 지반조사 결과를 바탕으로 딥러닝과 공간보간기법으로 지반 지지층 깊이 예측을 위한 비교 연구를 수행하였다. 이를 위해 딥러닝 알고리즘인 완전연결 네트워크와 포인트넷 방법, 공간보간기법으로는 IDW를 사용하였다. 각 분석 모델의 지지층 예측 결과 중 오차의 평균은 IDW가 3.01m 였으며, 완전연결 네트워크 및 포인트넷이 각 3.22m와 2.46m 였다. 결과의 표준편차는 IDW가 3.99였으며, 완전연결네트워크와 포인트넷이 3.95와 3.54로 나타났다. 연구 결과 3차원 정보에 특화된 포인트넷 구조를 적용한 네트워크가 IDW 및 완전연결 네트워크에 비해 개선된 결과를 나타냈다.

그래프 임베딩을 활용한 코로나19 가짜뉴스 탐지 연구 - 사회적 참여 네트워크의 이용 여부에 따른 탐지 성능 비교 (A study on the detection of fake news - The Comparison of detection performance according to the use of social engagement networks)

  • 정이태;안현철
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.197-216
    • /
    • 2022
  • 인터넷 및 모바일 기술의 발달과 소셜미디어의 확산으로 인해 다량의 정보들이 온라인 상에서 생성, 유통되고 있다. 이중에는 대중에게 도움이 되는 유익한 정보들도 있지만, 역기능을 하는 이른바 가짜뉴스들도 함께 유통되고 있다. 지난 2020년 코로나19의 전세계적인 확산 이후, 온라인 상에는 이와 관련한 수많은 가짜뉴스들이 유통되었다. 다른 가짜뉴스들과 달리 코로나19와 관련된 가짜뉴스는 사람들의 건강, 나아가 생명까지 위협할 수 있다는 점에서 그 심각성이 매우 크다고 할 수 있다. 때문에 코로나19와 관련한 가짜뉴스를 자동으로 탐지하고, 이를 예방하는 지능형 기술은 사회적 건강도를 제고하는데 매우 의미 있는 연구주제라 할 수 있다. 이러한 배경에서 본 연구에서는 코로나19 관련 가짜뉴스 탐지를 효과적으로 수행하기 위해 그래프 임베딩 방법 중 하나인 Graph2vec을 활용한 방법을 제안한다. 가짜뉴스 탐지에 대한 주류 방법은 뉴스 콘텐츠 기반 즉, 텍스트에 대한 특징 분석으로 진행되었으나 본 연구에서는 사회적 참여 네트워크 내에서의 정보 전달 관계를 추가로 활용함으로써 보다 효과적으로 코로나19와 관련된 가짜뉴스를 탐지할 수 있었으며 성능 측면에서 정확도 향상을 확인할 수 있었다.

적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성 (Multidimensional data generation of water distribution systems using adversarially trained autoencoder)

  • 김세형;전상훈;정동휘
    • 한국수자원학회논문집
    • /
    • 제56권7호
    • /
    • pp.439-449
    • /
    • 2023
  • 최근 계측 기술의 발전으로 압력계와 유량계 등 다양한 센서를 설치하여 상수도관망의 상태를 효과적으로 파악할 수 있게 되었으나, 도시가 광범위하게 개발됨에 따라 계측 신뢰도에 영향을 미치는 변수는 다양해지고 있다. 특히 상수도관망 분석에 중요한 영향력을 가지는 수요 데이터의 경우 직접 계측의 난이도가 높고 결측이 발생하기 쉬운 것으로 알려져 데이터 생성의 중요도가 증가하고 있다. 본 논문에서는 상수도관망에서 누락된 데이터를 정확하게 생성하기 위해 생성적 딥러닝 모델에 기반한 적대적 학습 기반 오토인코더(ATAE) 모델을 제안한다. 제안된 모델은 판별 신경망과 생성 신경망의 두 가지 신경망의 적대적 학습을 사용하여 압력 데이터로부터 수요 데이터를 생성한다. 학습이 완료된 ATAE 모델의 생성 신경망은 관망의 계측되는 압력 데이터가 존재하는 경우, 그로부터 추정된 관망 수요 데이터를 제공할 수 있다. ATAE 모델은 미국 텍사스주 오스틴의 실제 상수도망에 적용되어 성능이 검증되었다. 수요 및 압력 시계열 데이터의 불확실성 정도에 따른 ATAE 예측 결과의 정확도를 비교하여 데이터 불확실성의 영향을 분석하였으며, 또한 수요 수준에 따른 데이터 수집 기간별 생성 결과를 비교하여 이에 따른 데이터 생성 성능을 검토하였다.

의료 데이터 산업을 위한 비정형 데이터 비식별화 정책에 관한 연구 (A study on the policy of de-identifying unstructured data for the medical data industry)

  • 이선진;박태림;김소희;오영은;이일구
    • 융합보안논문지
    • /
    • 제22권4호
    • /
    • pp.85-97
    • /
    • 2022
  • 빅데이터 기술이 발전하면서 데이터가 전 산업의 혁신 성장을 가속하는 초연결 지능화 사회로 빠르게 진입하고 있다. 고품질의 다양한 데이터를 보유하고 활용하는 융복합 산업이 새로운 성장 동력으로 자리매김하고 있으며, 다양한 전통 산업군에 빅데이터가 융합되어 데이터 기반의 혁신을 통해 디지털 전환이 이루어지고 있다. 특히 의료 분야에서는 전자의무기록 데이터와 같은 정형 데이터와 CT, MRI 등의 비정형 의료 데이터를 함께 활용함으로써, 질병 예측 및 진단의 정확도를 높이고 있다. 현재 의료 산업에서 비정형 데이터의 중요성과 규모는 나날이 증가하고 있지만, 종래의 데이터 보안 기술과 정책은 정형 데이터 중심이며, 비정형 데이터의 보안성과 활용성에 대한 고려는 미비하다. 향후 빅데이터를 활용한 진료가 활성화되려면 데이터의 다양성과 보안성이 데이터 구축, 유통, 활용 단계에서 내재화되고 유기적으로 연계되어야 한다. 본 논문에서는 국내외 데이터 보안 제도와 기술 현황을 분석한다. 이후 의료 분야에서 비정형 데이터가 활발히 사용될 수 있도록 비식별조치 가이드라인에 비정형 데이터 중심의 비식별 기술과 산업에서의 기술 적용 사례를 추가하고, 비정형 데이터에 대한 개인정보 판단 기준을 수립할 것을 제안한다. 더 나아가 개인정보를 침해하지 않고, 비정형 데이터에 활용할 수 있는 객체 특징 기반의 식별 ID를 제안한다.

3차원 격자 스트럿-타이 모델 방법을 이용한 PSC 박스거더 격벽부의 강도예측 (Strength Prediction of PSC Box Girder Diaphragms Using 3-Dimensional Grid Strut-Tie Model Approach)

  • 박정웅;김태영
    • 대한토목학회논문집
    • /
    • 제26권5A호
    • /
    • pp.841-848
    • /
    • 2006
  • PSC 박스거더 교량의 격벽(diaphragm)은 프리스트레스에 의해 큰 집중하중이 가해지기 때문에 응력의 분포가 매우 교란되며 격벽에 발생하는 과도한 균열은 격벽의 거동을 매우 복잡하게 만든다. AASHTO 설계기준에 따르면 집중 긴장하중에 의한 3차원 효과는 3차원 모델을 이용하거나, 둘 혹은 그 이상의 평면으로 분리된 하위모델(submodel)을 사용하여 근사적으로 계산하는 방법을 허용하고 있다. 이때 하위모델은 각 방향에 대하여 독립적으로 결정할 수 있으나 모델 간의 상호작용이 고려되어야 하며 일관성이 있어야 한다. 그러나 외부 긴장재의 정착을 위한 격벽은 2차원 문제로 간주하기 어려운 3차원 응력교란영역(disturbed region) 구조물이며, 2차원 모델을 이용하여 격벽에 작용하는 힘의 흐름을 표현하는 것은 만족한 결과를 주지 못한다. 본 연구에서는 3차원 응력교란영역 구조부재의 해석/설계를 위해 제안된 컴퓨터에 기반한 3차원 격자 스트럿-타이 모델 방법을 이용하여 Texas대학교에서 실험, 파괴된 PSC 박스거더 격벽의 1/2 축소 모형을 해석하였다. 그리고 그 결과를 기존의 연구결과 및 실험결과와 비교하여 제안된 방법의 타당성과 정확성을 평가함으로서, 포스트텐션 정착부 및 격벽부 설계를 위한 합리적인 컴퓨터 기반의 설계방법을 제시하였다.

신호접근법에 의한 유조선 해운시장 위기 예측 연구 (A Study on the Early Warning Model of Crude Oil Shipping Market Using Signal Approach)

  • 최봉근;류동근
    • 한국항해항만학회지
    • /
    • 제47권3호
    • /
    • pp.167-173
    • /
    • 2023
  • 한국 경제에 근간이 되는 산업은 제조업이고, 그중 석유화학산업은 전량 원유를 수입하여 우리나라의 기술력으로 가공하여 재수출하는 전략적 성장 산업이다. 수많은 제조업의 원료가 되는 원유를 전량 해상운송을 통해 수입하는 우리나라는 변동성이 심한 유조선 운임 시장에 대해 기민하게 대응해야 한다. 유조선 운임 시장의 위기는 관련 해운회사의 위기에서 끝나지 않고 원유를 사용하는 산업에서부터 국민의 생활까지 영향을 미칠 수 있으므로, 본 연구에서 신호접근법을 활용한 조기경보모형을 제시했다. BDTI 운임지수를 활용하여 유조선 해운시장 위기를 정의하고, 38개의 거시경제, 금융, 원자재 지표 그리고 해운시장 데이터를 활용해 시차상관관계를 분석하여 유조선 해운시장 위기에 선행적으로 반응하는 종합선행지수를 도출했다. 연구 결과, 종합선행지수는 두 달 전 가장 높은 0.499의 시차상관계수 값을 가졌으며, 5개월 전부터 유의미한 상관계수 값을 나타냈다. QPS 값은 0.13으로 위기 예측에 대해 높은 정확성을 지니는 것으로 검증됐다. 더불어 기존의 다른 시계열 예측모형 연구들과 달리 본 연구는 경제 위기와 유조선 해운시장의 위기 간의 시차를 계량적으로 접근하여, 관련 해운산업 종사자들과 정책 입안자들에게 위기에 효과적으로 대처할 수 있는 전략의 기틀을 제공함에 의의가 있다.

친환경 스마트 선박 인력 수요예측에 관한 연구 (A Study on Forecasting of the Manpower Demand for the Eco-friendly Smart Shipbuilding)

  • 신상훈;신용존
    • 한국항만경제학회지
    • /
    • 제39권2호
    • /
    • pp.1-13
    • /
    • 2023
  • 이 연구는 IMO의 환경규제와 4차산업 혁명 기술의 확산에 따라 그중요성과 비중이 확대되고 있는 친환경 스마트 선박의 성장에 필요한 인력 수요를 통계청의 2000년~2020년의 조선산업 인력자료를 기반으로 예측하였다. 추세분석과 시계열분석의 다양한 모델을 적용하여 조선산업의 인력 수요를 예측하고 최근 5년간의 실적치와 비교하여 기하평균을 적용한 단순평균법이 예측 오차가 유의적으로 가장 적은 것으로 평가되었다. 그리고 산업통상자원부의 친환경 스마트 선박 분야의 2018년과 2020년의 인력현황 설문조사 결과를 바탕으로 조선산업 인력 증가추이를 반영하여 인력 수요를 예측하였다. 조선산업의 인력수요 예측치에 친환경 스마트 선박부분의 인력 증가수치를 반영하여 인력 수요를 예측한 결과, 2025년 62,001명, 2030년 85,035명으로 증가하는 것으로 예측되었다. 본 연구는 고부가가치 친환경 스마트 선박 분야에 필요한 인력 수요를 통계자료에 기반하여 객관적으로 예측함으로써, 향후의 인력 수요에 대응한 적절한 전문인력의 양성 및 공급 방안 수립에 기여하게 될 것으로 평가된다.