Browse > Article
http://dx.doi.org/10.14578/jkfs.2022.111.1.50

Evaluation of Habitat Suitability of Honey Tree Species, Kalopanax septemlobus Koidz., Tilia amurensis Rupr. and Styrax obassis Siebold & Z ucc. in the Baekdudaegan Mountains using MaxEnt Model  

Sim, Hyung Seok (Department of Forest Resources, Kookmin University)
Lee, Min-Ki (Department of Forest Resources, Kookmin University)
Lee, Chang-Bae (Department of Forest Resources, Kookmin University)
Publication Information
Journal of Korean Society of Forest Science / v.111, no.1, 2022 , pp. 50-60 More about this Journal
Abstract
In this study, habitat suitability was analyzed for three major honey tree species, namely Kalopanax septemlobus, Tilia amurensis, and Styrax obassis, in the Baekdudaegan Mountains using MaxEnt models. The AUC values indicating the prediction accuracies of the models were 0.747, 0.790, and 0.755 for K. septemlobus, T. amurensis, and S. obassis, respectively. The most important variables for K. septemlobus and T. amurensis were elevation, mean annual temperature, and slope, whereas mean annual temperature, elevation, and mean annual precipitation were the most important predictors for S. obassis. For all three studied species, elevation and mean annual temperature were the most important topographic and climatic factors, respectively, indicating that such variables are crucial for explaining species distribution. Honey tree species are essential resources in forest beekeeping, a high value-added process for improving forest income, and this study identified sites with the potential for management of such species in the Baekdudaegan Mountains, where it may be possible to establish a honey forest. However, the accuracy of the models should be improved through comprehensive analysis with abiotic variables, such as soil properties and aridity, which affect the distribution of honey tree species, as well as biotic variables, such as interspecific competition.
Keywords
Baekdudaegan Mountains; habitat suitability; honey tree species; MaxEnt; species distribution model;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Korea Forest Service. 2020. Natural Resources Change Survey and Management Practice Study of the Baekdudaegan Mountains. pp. 18.
2 Kim, T.W. and Lee, Y.M. 1989. The state and propagation plans of honey plants in Korea. Journal of Apiculture 4(1): 9-18.
3 Kopecky, M., Macek, M. and Wild, J. 2021. Topographic wetness index calculation guidelines based on measured soil moisture and plant species composition. Science of The Total Environment 757: 143785.   DOI
4 Korea Forest Service. 2011. Survey Report about Resources in BDMS. pp. 247.
5 Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T. and O'Brien, E.M. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84(12): 3105-3117.   DOI
6 Hong, S.C. 2002. Forestry policy and the future of honey tree species. Proceedings of the 2002 meeting of Journal of Apiculture 1: 85-100.
7 Hong, S.S., Han, D.I., Hwang, B.Y., Choi. W.H., Kang, H.S., Lee, M.K., Lee, D.K., Lee, K.S. and Ro, J.S. 2001. Chemical components from the stem barks of Kalopanax septemlobus. Korean Journal of Pharmacogn 32(4): 302-306.
8 Hwang, K. 2016. Ecological characteristics and successional trends of forest cover types in the baekdudaegan, South Korea. (Dissertation). Chuncheon. Kangwon National University.
9 Jo, M.H., Kim, J.B., Jo, Y.W. and Baek, S.R. 2001. Application method of satellite image and GIS for suitability of black locust forest as honey plant area. Journal of the Korean Association of Geographic Information Studies 4(2): 27-37.
10 Kang, D.Y. 2018. Analysis on honey plants selection for and economic impacts of multi-functional honey plant complex. (Dissertation). Seoul. Seoul National University.
11 Ryu, J.B. 2003. Classification of honey plants in Korea. Journal of Apiculture 18(1): 5-22.
12 Park, S.W., Koo, K.A., Seo, C.W. and Kong, W.S. 2016. Potential impact of climate change on distribution of warm temperate. Journal of the Korean Geographical Society 51(2): 201-217.
13 Chun, J.H., Lee, C.B. and Yoo, S.M. 2015. Shifts of geographic distribution of Pinus koraiensis based on climate change scenarios and GARP model. Korea Journal of Agricultural and Forest Meteorology 17(4): 348-357.   DOI
14 Chung, Y.H. 1984. Flowering process and pollination mechanism of Genus Tilia in Korea. Journal of Plant Biology 27(3): 107-127.
15 Meyer, P. 1992. The snowbells of Korea. Arnoldia 52(1): 2-8.
16 Park, B.J., Byeon, J.G. and Cheon, K.I. 2019. Study of ecological niche and indicator species by landforms and altitude of forest vegetation in Mt. Myeonbong. Korean Journal of Plant Resources 32(4): 325-337.   DOI
17 Park, H.C., Lee, J.H., Lee, G.G. and Um, G.J. 2015. Environmental features of the distribution areas and climate sensitivity assessment of Korean Fir and Khinghan Fir. Journal of Environmental Impact Assessment 24(3): 260-277.   DOI
18 Shin, M.S., Seo, C., Park, S.U., Hong, S.B., Kim, J.Y., Jeon, J.Y. and Lee, M. 2018. Prediction of potential habitat of Japanese evergreen oak (Quercus acuta Thunb.) considering dispersal ability under climate change. Journal of Environmental Impact Assessment 27(3): 291-306.   DOI
19 Ryu, J.B. and Jang, J.W. 2008. Newly found honey plants in Korea. Journal of Apiculture 23(3): 221-228.
20 Philips, S.J. and Dudik, M. 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31(2): 161-175.   DOI
21 Vinod, P.G. 2017. Development of topographic position index based on Jenness algorithm for precision agriculture at Kerala, India. Spatial Information Research 25(3): 381-388.   DOI
22 Philips, S.J., Schapire, R.E. and Dudik, M. 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning. pp. 83.
23 Lee, C.B., Chun, J.H. and Kim, H.H. 2013. Elevational pattern and determinants of α and β plant diversity on the ridge of the baekdudaegan mountains, South Korea. Journal of Agriculture and Life Science 48(3): 93-104.   DOI
24 Lee, C.H., Choi, Y.C., Kim, S.H. and Kwon, K.W. 2000. Site characteristics, and vegetation structure, and dynamics of forest communities growing Kalopanax septemlobus (Thunb. ex Murray) Koidz. Gangwon-do. Korean Journal of Plant Resources 13(3): 227-242.
25 Lee, M.K., Chun, J.H. and Lee, C.B. 2021. Prediction of distribution changes of Carpinus laxiflora and C. tschonoskii based on climate change scenarios using MaxEnt model. Korean Journal of Agricultural and Forest Meteorology 23(1): 55-67.   DOI
26 Lobo, J.M., Jimenez-Valverde, A. and Real, R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global ecology and Biogeography 17(2): 145-151.   DOI
27 Weiss, A. 2001. Topographic position and landforms analysis. In Poster presentation, ESRI user conference, San Diego 200.
28 Yoo, K.J. 2002. An approach for establishing conceptual framework of management spectrum on the Baekdudaegan area, Korean. Korean Society of Environment and Ecology 15(4): 408-419.
29 Elith, J., Kearney, M. and Phillips, S. 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution 1(4): 330-342.   DOI
30 Song, W.K. 2015. Habitat analysis of Hyla suweonensis in the breeding season using species distribution modeling. Journal of Korean Society of Environmental Restoration Technology 18(1): 71-82.   DOI
31 Fritsch, P. 2004. Styracaceae. Flowering Plants.Dicotyledons. Springer. pp. 434-442.
32 Gonsoulin, G.J. 1974. A revision of Styrax (Styracaceae) in North America, Central America, and the Caribbean. SIDA, Contributions to Botany 5(4): 191-258.
33 Grendar, M. 2001. Maximum entropy: Clearing up mysteries. Entropy 3(2): 58-63.   DOI
34 Guisan, A. and Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135 (2-3): 147-186.   DOI
35 Kang, H.S. and Lee, D.K. 1998. Site and growth characteristics of Kalopanax septemlobus growing at Mt. Joongwang in Pyungchang-gun, Kangwon-do. Journal of Korean Society of Forest Science 87(3): 483-492.
36 Kang, J.H., Suh, M.S. and Kwak, C.H. 2009. Classification of land cover over the Korean Peninsula using MODIS data. Atmosphere 19(2): 169-182.
37 Khuroo, A.A., Weber, E., Malik, A., Reshi, Z.A. and Dar, G. 2011. Altitudinal distribution patterns of the native and alien woody flora in Kashmir Himalaya, India. Environmental Research 111(7): 967-977.   DOI
38 Kim, D.H., Kim, S.H. and Oh, C.H. 2015b. Ecological characteristic in communities of Pinus densiflora at the Mt. Baekdudaegan -Between Cheonghwasan and Namdeogyusan-. Korean Journal of Environment and Ecology 25(2): 69.
39 Song, W.K. and Kim, E.Y. 2012. A comparison of machine learning species distribution methods for habitat analysis of the Korea water deer (Hydropotes inermis argyropus). Korean Journal of Remote Sensing 28(1): 171-180.   DOI
40 Thuiller, W. 2003. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9(10): 1353-1362.   DOI
41 Phillips, S.J., Anderson, R.P. and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3-4): 231-259.   DOI
42 Kwon, H.S., Ryu, J.E., Seo, C.W., Kim, J.Y., Lim, D.O. and Seo, M.S. 2012. A study on distribution characteristics of Corylopsis coreana using SDM. Journal of Environmental Impact Assessment 21(5): 735-743.   DOI
43 Lee, C.B. and Kim, H.H. 2018. Elevational patterns of plant species richness and relative importance of climatic and topographic factors on the Mt. Seorak, South Korea. Journal of Agriculture and Life Science 52(3): 1-11.
44 Lee, Y.H., Oh, Y.J., Hong, S.H., Na, C.S., Na, Y.E., Kim, C.S. and Sohn, S.I. 2015. Predicting the suitable habitat of invasive alien plant Conyza bonariensis based on climate change scenarios. Journal of Climate Change Research 6(3): 243-248.   DOI
45 Han, J., Kang, M., Kim, S., Lee, K. and Baik, E. 2009. Flowering, honeybee visiting and nectar secretion characteristics of Robinia pseudoacacia L. Suwon, Gyeonggi province. Journal of Apiculture 24(3): 147-152.
46 Porzel, A., Sung, T.V., Schmidt, J., Lischewski, M. and Adam, G. 1992. Studies on the chemical constituents of Kalopanax septemlobus. Planta Medica 58(5): 481-482.   DOI
47 Oh, M.S., Kim, D.L. and Lee, S.H. 2016. History, current status, and discussion on the future vision of Apis cerana beekeeping in Korea. Journal of Apiculture 31(2): 165-172.   DOI
48 Park, H.C., Lim, J.C., Lee, J.H. and Lee, G.G. 2017. Predicting the potential distributions of invasive species using the Landsat imagery and MaxEnt: Focused on. Journal of the Korean Society of Environmental Restoration Technology 20(1): 1-12.
49 Rowe, R.J. 2009. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 32(3): 411-422.   DOI
50 Kim, M.S., Kim, H.S., Kim, S.D., Park, S.J., Song, J.H. and Kim, S.H. 2015a. Pollinator visit, characteristics of secreted nectar and analysis of nectar sugar and amino acid contents in flower of Dendropanax morbifera Lev. Journal of Apiculture 30(4): 307-314.   DOI
51 Kim, Y.K., Kim, S.H., Kim, M.S., Yun, A.Y., Park, I.H. and Go, Y.S. 2018. Flower morphological characteristics and classification of selected population of Sorbus alnifolia (Siebold and Zucc.) K. Koch. Journal of Apiculture 33(3): 157-163.   DOI
52 Arheimer, B., Dahne, J., Lindstrom, G., Marklund, L. and Stromqvist, J. 2011. Multi-variable evaluation of an integrated model system covering Sweden (S-HYPE). IAHS-AISH Publication 345(1): 145-150.
53 Sugden, E.A. 1986. Anthecology and pollinator efficacy of Styrax officinale subsp. redivivum (Styracaceae). American Journal of Botany 73(6): 919-930.   DOI
54 Han, J. and Kim, S. 2008. Flowering and nectar secretion characteristics of honey plant, Hovenia dulcis var. koreana Nakai. Journal of Apiculture 23(3): 199-205.
55 Seo, C.W., Park, Y.L. and Choi, Y.S. 2008. Comparison of species distribution models according to location data. Journal of Korean Society for Geospatial Information Science 16(4): 59-64.
56 Shin, M.H., Kim, J.H., Kwon, J., Lim, J.H., Choi, H.T. and Park, C. 2016. Comparison of survey methods and results for natural environment in Baekdudaegan mountain system. Journal of the Korean Society of Environmental Restoration Technology 19(2): 1-18.
57 Shin, M.S., Jang, R.I., Sea, C.W. and Lee, M.W. 2015. A comparative study on species richness and land suitability assessment - Focused on city in Boryeong -. Journal of Environmental Impact Assessment 24(1): 35-50.   DOI
58 Yost, A.C., Petersen, S.L., Gregg, M. and Miller, R. 2008. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecological Informatics 3(6): 375-386.   DOI
59 Sung, C.Y., Shin, H.T., Choi, S.H. and Song, H.S. 2018. Predicting potential habitat for Hanabusaya asiatica in the North and South Korean border region using MaxEnt. Korean Journal of Environment and Ecology 32(5): 469-477.   DOI
60 An, J.B., Sung, C.Y., Moon, A.R., Kim, S., Jung, J.Y., Son, S., Shin, H.T. and Park, W.G. 2021. Distribution and potential suitable habitats of an endemic plant, Sophora koreensis in Korea. Korean Journal of Environment and Ecology 35(2): 154-163.   DOI
61 Baldwin, R.A. 2009. Use of maximum entropy modeling in wildlife research. Entropy 11(4): 854-866.   DOI
62 Cho, H.J., Kim, D.H., Shin, M.S., Kang, T. and Lee, M. 2015. Predicting the goshawk's habitat area using species distribution modeling: case study area Chungcheongbuk-do, South Korea. Korean Journal of Environment and Ecology 29(3): 333-343.   DOI
63 Cho, N., Kim, E.S., Lee, B., Lim, J.H. and Kang, S. 2020. Predicting the potential distribution of Pinus densiflora and analyzing the relationship with environmental variable using MaxEnt model. Korean Journal of Agricultural and Forest Meteorology 22(2): 47-56.   DOI
64 Kim, M.S. 2021. A study on the valuation of four major honey-source trees. (Dissertation). Chuncheon. Kangwon National University.
65 National Institute of Forest Science. 2009. Actual status of production and distribution of medicinal resources in mountainous areas, pp. 133.
66 Lim, C.H., Jung, S.H., Jung, S.Y., Kim, N.S. and Cho, Y.C. 2020. Selection of optimal models for predicting the distribution of Invasive alien plants species (IAPS) in forest genetic resource reserves. Korean Journal of Environment and Ecology 34(6): 589-600.   DOI
67 Kim, H.G., Lee, D.K., Mo, Y.W., Kil, S.H., Park, C. and Lee, S.J. 2013. Prediction of landslides occurrence probability under climate change using MaxEnt model. Journal of Environmental Impact Assessment 22(1): 39-50.   DOI
68 Kim, J.Y., Kwon, H.S., Seo, C.W., Ryu, J.E. and Kim, M.J. 2012. A study on the species distribution modeling using national ecosystem survey data. Journal of Environmental Impact Assessment 21(4): 593-607.   DOI
69 Kim, M.S., Kim, S.H., Han, J., Kang, M.S. and Park, Y. 2011. Honeybee visiting and nectar secretion characteristics of Crataegus pinnatifida Bunge, Chinese Hawthorn. Journal of Apiculture 26(1): 11-14.