DOI QR코드

DOI QR Code

Evaluation of Undrained Shear Strength of Busan New-port Clay by DMT

DMT를 이용한 부산신항 점토의 비배수 전단강도 추정

  • Hong, Sung-Jin (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Shin, Dong-Hyun (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Kim, Dong-Hee (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Jung, Sang-Jin (Busan New Port North Container Terminal Phase 2-1, Engrg. & Construction, Samsung) ;
  • Lee, Woo-Jin (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 홍성진 (고려대학교 건축.사회환경공학과) ;
  • 신동현 (고려대학교 건축.사회환경공학과) ;
  • 김동휘 (고려대학교 건축.사회환경공학과) ;
  • 정상진 (삼성물산 건설부문 북컨 2-1단계 축조 현장) ;
  • 이우진 (고려대학교 건축.사회환경공학과)
  • Published : 2007.07.31

Abstract

A series of dilatometer test, field vane test, and $CK_0U$ triaxial test were performed for clayey soils of Busan new port site to develop the relationships between undrained shear strength and the DMT results. Normalized undrained shear strength is turned out to be $S_{u(CKU)}/{\sigma}'_v=0.30{\sim}0.35\;for\;CK_0U$ triaxial test and ${\mu}S_{u(VST)}/{\sigma}'_v=0.20{\sim}0.22$ for vane shear test. By comparing the undrained shear strength estimated from DMT indices with the results measured by in-situ vane test or $CK_0U$ triaxial test, two methods to predict the undrained shear strength from DMT results are suggested. One is based on the relationship between $S_u/{\sigma}'_v$ and horizontal stress index (KD) while another method comes from $N_c-I_D$ and $N_c-E_D$ correlation. It was observed that the method based on $N_c-I_D\;or\;N_c-E_D$ relation shows slightly better accuracy than the one based on $K_D$ although all of the methods suggested in this study provided comparable values of predicted undrained shear strength. Since the definitions of $I_D\;and\;E_D$ contain $p_1-p_0$, in which soil condition is reflected, it is believed that the prediction method using $N_c$ is capable of taking a material type into consideration.

본 연구에서는 DMT를 이용한 비배수 전단강도를 파악하기 위하여 부산신항 점토층에 DMT 시험, 베인전단시험, $CK_0U$ 삼축압축시험을 실시하였다. 시험결과 정규화한 비배수 전단강도비는 삼축시험의 경우 $S_{u(CKU)}/{\sigma}'_v=0.30{\sim}0.35$, 베인전단시험의 경우 ${\mu}S_{u(VST)}/{\sigma}'_v=0.20{\sim}0.22$로 나타났다. 본 연구에서는 현장 베인전단시험 및 삼축압축시험 결과와의 비교를 통해, DMT를 이용하여 비배수 전단강도를 추정하는 두 가지 방법을 제안하였다. 첫 번째는 $S_u/{\sigma}'_v$와 횡방향 응력지수의 관계를 이용하는 방법이고, 두 번째는 $N_c-I_D$ 또는 $N_c-E_D$ 관계로부터 비배수 전단강도를 추정하는 방법이다. 베인전단시험 및 삼축시험 결과와 두 가지 추정방법을 비교한 결과, $N_c-I_D$ 또는 $N_c-E_D$ 관계를 이용한 방법이 $K_D$ 이용하는 방법보다 비배수 전단강도를 정확하게 추정하는 것으로 나타났다. 이것은 $I_D$$E_D$가 토질상태를 반영하는 $p_1-p_0$항을 포함하고 있어, $N_c$를 이용하는 방법이 토질을 고려한 비배수 전단강도 추정을 할 수 있기 때문으로 판단된다.

Keywords

References

  1. 김길수, 임형덕, 김대규, 이우진 (2001), '양산점토의 비배수 전단강도 특성', 한국지반공학회 논문집, 제 17권 4호, pp.259-267
  2. 김민석, 이남기, 조영기, 정성교 (2006), '현장베인시험에 의한 부산점토의 비배수 전단강도', 한국지반공학회 2006 가을학술발표회 논문집, pp.1016-1023
  3. 김상규, 김윤태 (2006), '낙동강 하구 델타 퇴적토의 특성과 기초설계와의 관련', 낙동강하구 연약 지반에서의 중.저층 빌딩의 최적 기초형식에 관한 Workshop 논문집, ATC-7, Seoul, Korea, pp.19-101
  4. 김종국, 김영웅, 최인걸, 박영목 (2001), 'CPTu와 DMT를 이용한 인천국제공항 해성점토의 공학적 특성연구', 한국지반공학회 논문집, 제 17권 2호, pp.41-49
  5. 김주형, 김영웅, 조성민, 김명모 (2000), '인천국제공항 부지 해성 세립토에 대한 CPTU와 DMT 결과 비교', 한국지반공학회 논문집, 제 16권 6호, pp.23-33
  6. 변위용, 김영상, 이승래 (2004), 'Flat DMT를 이용한 국내 연약지반의 비배수 전단강도 추정 시 dudgidd을 미치는 요소들', 한국지반공학회 논문집, 제 20권 4호, pp.103-113
  7. 이영철, 김규종, 장우영, 정성교 (2006), '실내시험에 의한 부산점토의 비배수 전단강도 특성에 관한 연구', 한국지반공학회 2006 가을학술발표회 논문집, pp.1085-1096
  8. Azzouz, A. S., Baligh, M. M. and Ladd, C. C. (1983), 'Corrected Field Vane Strength for Embankment Design', J. Geotechnical Engineering, Vol. 109, No.5, pp.730-734 https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(730)
  9. Bjerrum, L. (1972), 'Embankments on Soft Ground', Proc. ASCE Specialty Conference on Earth and Earth-Supported Structures, Purdue University, Vol.2, pp.l-54
  10. Chung, S. G., Back, S. H., Ryu, C. K. and Kim, S. W. (2003), 'Geotechnical Characterization of Pusan Clays', Proc. Korea-Japan Joint Workshop on Characterization of Thick Clay Deposits, ATC-7, Busan, pp.3-44
  11. Jamiolkowski, M., Ladd, C. C., Germaine, J. T., and Lancellotta, R. (1985), 'New Developments in Field and Laboratory Testing of Soils', Proc. 11th international Coriference on Soil Mechanics and Foundation Engineering, San Francisco, Vol.1, pp.57-153
  12. Ladd, C. C., Foott, R., Ishihara, K., Schlosser, F., and Poulos, H. G. (1977), 'Stress-Deformation and Strength Characteristics', Proc. 9th international Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol.2, pp.421-494
  13. Marchetti, S. (1980), 'In Situ Tests by Flat Dilatometer', J. Geotechnical Engineering, Vol.106, No.3, pp.299-321
  14. Marchetti, S., Monaco P., Totani G. and Calabrese M. (2001), 'The Flat Dilatometer Test in Soil Investigations', A Report by the ISSMGE Committee TC 16. Proc. International Conference on in Situ Measurement of Soil Properties, Bali, pp.1-41
  15. Mesri, G. (1975), Discussion to 'New Design Procedure for Stability of Soft Clays', J. Geotechnical Engineering, Vol.101, No.4, pp.409-412
  16. Powell, J. J. M. and Uglow, I. M. (1988), 'The Interpretation of the Marchetti Dilatometer Test in UK Clays', Proc. Penetration Testing, ICE, Birmingham, pp.269-273
  17. Roque, R., Jambu, N. and Senneset, K. (1988), 'Basic Interpretation Procedures of Flat Dilatometer Tests', Proc. Ist International Symposium on Penetration Testing, Orlando, Vol.1, pp.577-587
  18. Skempton, A. W. (1957), Discussion of 'Planning and Design of New Hong Kong Airport', Proc. institution of Civil Engineers, Vol.7, pp.305-307
  19. Kamei, T. and Iwasaki, K. (1995), 'Evaluation of Undrained Shear Strength of Cohesive Soils using a Flat Dilatometer', Soils and Foundations, Vol. 35, No.2, pp.111-116
  20. Torstensson, B. A. (1977), 'Time-Dependent Effects in the Field Vane Test', International Symposium on Soft Clay, Bangkok, pp.387-397
  21. Vesic, A. S (1972), 'Expansion of Cavities in Infinite Soil Mass', J. Soil Mech. Found., Vol.98, No.3 pp.265-290
  22. Weisel, C. E. (1973), 'Some Factors Influencing In Situ Vane Test Results', Proc. 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Vol.1, pp.111-159