DOI QR코드

DOI QR Code

Strength Prediction of PSC Box Girder Diaphragms Using 3-Dimensional Grid Strut-Tie Model Approach

3차원 격자 스트럿-타이 모델 방법을 이용한 PSC 박스거더 격벽부의 강도예측

  • Received : 2005.11.24
  • Accepted : 2006.03.03
  • Published : 2006.09.30

Abstract

There is a complex variation of stress in PSC anchorage zones and box girder diaphragms because of large concentrated load by prestress. According to the AASHTO LFRD design code, three-dimensional effects due to concentrated jacking loads shall be investigated using three-dimensional analysis procedures or may be approximated by considering separate submodels for two or more planes. In this case, the interaction of the submodels should be considered, and the model loads and results should be consistent. However, box girder diaphragms are 3-dimensional disturbed region which requires a fully three-dimensional model, and two-dimensional models are not satisfactory to model the flow of forces in diaphragms. In this study, the strengths of the prestressed box girder diaphragms are predicted using the 3-dimensional grid strut-tie model approach, which were tested to failure in University of Texas. According to the analysis results, the 3-dimensional strut-tie model approach can be possibly applied to the analysis and design of PSC box girder anchorage zones as a reasonable computer-aided approach with satisfied accuracy.

PSC 박스거더 교량의 격벽(diaphragm)은 프리스트레스에 의해 큰 집중하중이 가해지기 때문에 응력의 분포가 매우 교란되며 격벽에 발생하는 과도한 균열은 격벽의 거동을 매우 복잡하게 만든다. AASHTO 설계기준에 따르면 집중 긴장하중에 의한 3차원 효과는 3차원 모델을 이용하거나, 둘 혹은 그 이상의 평면으로 분리된 하위모델(submodel)을 사용하여 근사적으로 계산하는 방법을 허용하고 있다. 이때 하위모델은 각 방향에 대하여 독립적으로 결정할 수 있으나 모델 간의 상호작용이 고려되어야 하며 일관성이 있어야 한다. 그러나 외부 긴장재의 정착을 위한 격벽은 2차원 문제로 간주하기 어려운 3차원 응력교란영역(disturbed region) 구조물이며, 2차원 모델을 이용하여 격벽에 작용하는 힘의 흐름을 표현하는 것은 만족한 결과를 주지 못한다. 본 연구에서는 3차원 응력교란영역 구조부재의 해석/설계를 위해 제안된 컴퓨터에 기반한 3차원 격자 스트럿-타이 모델 방법을 이용하여 Texas대학교에서 실험, 파괴된 PSC 박스거더 격벽의 1/2 축소 모형을 해석하였다. 그리고 그 결과를 기존의 연구결과 및 실험결과와 비교하여 제안된 방법의 타당성과 정확성을 평가함으로서, 포스트텐션 정착부 및 격벽부 설계를 위한 합리적인 컴퓨터 기반의 설계방법을 제시하였다.

Keywords

References

  1. 건설교통부(2000) 도로교 설계기준, 한국도로교통협회
  2. 김태영(2003) 박스거더 격벽부의 3차원 스트럿-타이 모델 해석, 석사학위논문, 경북대학교
  3. 윤영묵, 최명석(2001) 포스트-텐션 부재의 정착부에 관한 AASHTO LRFD 설계기준의 평가, 대한토목학회논문집, 대한토목학회, 제21권 제3호, pp. 317-330
  4. 박정웅(2003) 3차원 스트럿-타이 모델을 이용한 철근콘크리트 부재의 해석 및 설계, 박사학위논문, 경북대학교
  5. American Association of State Highway Transportation Officials (AASHTO) (1998) AASHTO LRFD Bridge Design Specifications, 2nd ed., Washington, D.C.
  6. American Concrete Institute (2002) Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02), American Concrete Institute, Farmington Hills, Michigan
  7. Robert, C. (1990) Behavior and design of the local zone of post-tensioned concrete member, M.S. Thesis, The University of Texas, Austin, Texas
  8. Burdet, O.L. (1990) Analysis and design of anchorage zones in post-tensioned concrete bridge, PhD dissertation, University of Texas, Austin, Texas
  9. Guyon, Y. (1953) Prestressed concrete, John Wiley and Sons Inc., New York
  10. Podolny, W. Jr. (1985) The cause of cracking in post-tensioned concrete box girder bridges and retrofit procedures, Journal of the Prestressed Concrete Institute, Vol. 30, pp. 82-139
  11. Sanders, D.H. (1990) Design and behavior of anchorage zones in post-tensioned concrete members, PhD dissertation, University of Texas, Austin, Texas
  12. Wium, D.J.W. and Buyukozturk, O. (1984) Problems in designing prestressed segmental concrete bridges, National Academy of Sciences, Transportation Research Record no.950, Second Bridge Engineering Conference, Vol. 2, pp. 68-75
  13. Wollmann, G.P. (1992) Anchorage zones in Post-Tensioned Concrete Structure, PhD dissertation, University of Texas, Austin, Texas
  14. Yun, Y.M. (1994) Design and analysis of 2-D structural concrete with strut-tie model, PhD dissertation, School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
  15. Yun, Y.M. and Ramirez, J.A. (1996) Strength of struts and nodes in strut-tie model, Journal of Structural Engineering, ASCE, Vol. 122, No. 1, pp. 20-29 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(20)
  16. Yun, Y.M. (2000) Nonlinear strut-tie model approach for structural concrete, ACI Structural Journal, Vol. 97, No. 4, pp. 581-590
  17. Conti, E. and Poineau, D. (1995) Strengthening of an externally prestressed bridge, IABSE Symp., Vol. 73, No. 2, pp. 1503-1508
  18. Irshad, M. and Poston, R.W. (1993) Segmental aerial structure retrofit and load testing Struct. Engrg. Int., Vol. 2, pp. 108-112
  19. Woodward, R.J. (1983) Cracks in a concrete bridge, Concrete, Vol. 17, No. 7, 40-45
  20. Wollmann, G.P., Breen, J.E., and Kreger, M.E. (2000) Anchorage of External Tendons in End Diaphragms, Journal of Bridge Engineering, Vol. 5, No. 3, pp. 208-215 https://doi.org/10.1061/(ASCE)1084-0702(2000)5:3(208)
  21. Breen, J.E., Burdet, O.L., Roberts, C., Sanders, D.H., and Wollmann, G.P. (1991) Anchoreage Zone Reinforcement for Post-tensioned Concrete Girders, Research Report for NCHRP, The University of Texas, Austin, Texas
  22. Schlaich, J., Schaefer, K., and Jennewein, M. (1987) Towards a consistent design of structural concrete, Journal of the Prestressed Concrete Institute, Vol. 32, pp. 74-150
  23. Vecchio, F.J. and Collins, M.P. (1982) Response of Reinforced Concrete to In-Plane Shear and Normal Stresses, Report No. 82-03, Univ. of Toronto, Toronto, Canada
  24. Vecchio, F.J. and Collins, M.P. (1986) Modified compression field theory for reinforced concrete elements subjected to shear, ACI Journal, Proceedings, Vol. 83, No. 2, pp. 219-231
  25. Kwon, M.H. (2000) Three Dimensional Finite Element Analysis of Reinforced Concrete Members, Ph.D. Thesis, Dept. of Civil Engineering, University of Colorado, Boulder, Colorado, USA
  26. Darwin, D., and Pecknold, D.A. (1977) Nonlinear biaxial stress-strain law for concrete, Journal of Engineering Mechanics Division, ASCE, Vol. 103, No. 2, pp. 229-241
  27. Saenz, I.P. (1964) Discussion of equation for the stress-strain curve of concrete by desayi and krishman, Journal of ACI, Vol. 61, No. 3, pp. 1229-1235
  28. Rode, U. (1987) Framework Model for the Simulation of fracture behavior of concrete, IABSE Colloquium, pp. 221-227, Delft