• 제목/요약/키워드: Preclinical

검색결과 466건 처리시간 0.027초

Preclinical Evidence and Underlying Mechanisms of Polygonum multiflorum and Its Chemical Constituents Against Cognitive Impairments and Alzheimer's Disease

  • Jihyun Cha;Ji Hwan Yun;Ji Hye Choi;Jae Ho Lee;Byung Tae Choi;Hwa Kyoung Shin
    • 대한약침학회지
    • /
    • 제27권2호
    • /
    • pp.70-81
    • /
    • 2024
  • Objectives: Cognitive impairments, ranging from mild to severe, adversely affect daily functioning, quality of life, and work capacity. Despite significant efforts in the past decade, more than 200 promising drug candidates have failed in clinical trials. Herbal remedies are gaining interest as potential treatments for dementia due to their long history and safety, making them valuable for drug development. This review aimed to examine the mechanisms behind the effect of Polygonum multiflorum on cognitive function. Methods: This study focused primarily on the effects of Polygonum multiflorum and its chemical constituents on cognitive behavioral outcomes including the Morris water maze, the passive avoidance test, and the Y maze, as well as pathogenic targets of cognitive impairment and Alzheimer's disease (AD) like amyloid deposition, amyloid precursor protein, tau hyperphosphorylation, and cognitive decline. Additionally, a thorough evaluation of the mechanisms behind Polygonum multiflorum's impact on cognitive function was conducted. We reviewed the most recent data from preclinical research done on experimental models, particularly looking at Polygonum multiflorum's effects on cognitive decline and AD. Results: According to recent research, Poligonum multiflorum and its bioactive components, stilbene, and emodin, influence cognitive behavioral results and regulate the pathological target of cognitive impairment and AD. Their mechanisms of action include reducing oxidative and mitochondrial damage, regulating neuroinflammation, halting apoptosis, and promoting increased neurogenesis and synaptogenesis. Conclusion: This review serves as a comprehensive compilation of current experiments on AD and other cognitive impairment models related to the therapeutic effects of Polygonum multiflorum. We believe that these findings can serve as a basis for future clinical trials and have potential applications in the treatment of human neurological disorders.

증권시장 상장이 신약개발 바이오벤처기업의 기술사업화 성과에 미치는 사례연구 (Case Study on the Effect of IPO on the Technology Commercialization Performance of the New Drug Development Bio Venture Company)

  • 김주영;하규수
    • 벤처창업연구
    • /
    • 제14권1호
    • /
    • pp.151-166
    • /
    • 2019
  • 신약개발은 기초연구${\rightarrow}$전임상${\rightarrow}$임상${\rightarrow}$품목허가${\rightarrow}$판매에 이르기까지 10~15년의 긴 시간과 10억불 이상의 막대한 자금을 필요로 한다. 많은 신약개발 바이오벤처기업은 증권시장 상장을 통해 확보한 자금으로 신약개발을 지속적으로 추진하고자 한다. 본 연구는 증권시장 상장이 신약개발 바이오벤처기업에 미치는 영향에 주목하여, 상장 시점(D) 및 상장 후 2년 시점(D+2년)에서 등록특허, 전임상, 임상, 기술이 전계약의 증가 여부로 증권시장 상장에 의한 신약개발 바이오벤처기업의 기술사업화 성과를 분석하였다. 또한 상장 및 상장 후 2년 시점에서 등록특허, 전임상 및 임상이 기술이전계약에 유의미한 영향을 미치는지 분석하였다. 분석결과는 다음과 같다. 첫째, 한국의 신약개발 바이오벤처기업은 상장 시점과 상장 후 2년 시점을 비교하면, 등록특허는 증가했으나 전임상, 임상 및 기술이전계약은 증가하지 않았다. 둘째, 상장 시점과 상장 후 2년 시점에 전임상은 한국기술이전계약에 유의한 영향을 주고 있고 해외기술이전계약에 부분적으로 유의한 영향을 주고 있지만, 등록특허 및 임상은 기술이전계약에 유의한 영향을 주지 않았다. 한국의 신약개발 바이오벤처기업은 증권시장 상장에도 불구하고 특허는 증가했지만, 전임상, 임상 및 기술이전계약은 증가하지 못했음을 알 수 있다. 향후 신약개발 바이오벤처기업의 기술사업화를 강화하기 위해서는 IPO 공모자금의 효율적 사용을 위한 R&D전략 수립, 산 학 연 연계 강화를 통한 오픈 이노베이션, 보다 정교한 전임상 및 임상 전략 수립 등이 요청되고 있다.

Mouse Models of Gastric Carcinogenesis

  • Yu, Sungsook;Yang, Mijeong;Nam, Ki Taek
    • Journal of Gastric Cancer
    • /
    • 제14권2호
    • /
    • pp.67-86
    • /
    • 2014
  • Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field.

The Suicide Gene Diphtheria Toxin A Based Therapy in Cancer Treatment

  • Nguyen.T.Q., Anh;Jeong, Dong-Kee
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권3호
    • /
    • pp.155-168
    • /
    • 2012
  • Therapeutic cancer is a long lasting and turbulent history accompany with the milestones in surgical intervention, chemotherapy and radiotherapy. In the past decade, however, metastatic cancer still obstinately exists challenging the professional scientist. Beside the major forms of cancer treatment, Diphtheria toxin (DT) which is produced by a pathogenic strain of bacterium Corynebacterium diphtheria to shield themselves against the other dangerous organism, have been researched as a potential candidate to overcome the drawback such as non-specific, non-effect to drug resistant cancer cell and side effects when using chemotherapy and radiotherapy. In the context of suicide gene therapy, the DT expression under controlling of tissue-specific promoter will be targeted in cancer cell but defect in normal cell. The molecular mechanism, characteristic of DT-bases therapy and prominent achievements of preclinical and clinical studies for the past decade are summarized and discussed in this review.

Preclinical Prototype Development of a Microwave Tomography System for Breast Cancer Detection

  • Son, Seong-Ho;Simonov, Nikolai;Kim, Hyuk-Je;Lee, Jong-Moon;Jeon, Soon-Ik
    • ETRI Journal
    • /
    • 제32권6호
    • /
    • pp.901-910
    • /
    • 2010
  • As a supplement to X-ray mammography, microwave imaging is a new and promising technique for breast cancer detection. Through solving the nonlinear inverse scattering problem, microwave tomography (MT) creates images from measured signals using antennas. In this paper, we describe a developed MT system and an iterative Gauss-Newton algorithm. At each iteration, this algorithm determines the updated values by solving the set of normal equations using Tikhonov regularization. Some examples of successful image reconstruction are presented.

Radiotherapy and immune checkpoint blockades: a snapshot in 2016

  • Koo, Taeryool;Kim, In Ah
    • Radiation Oncology Journal
    • /
    • 제34권4호
    • /
    • pp.250-259
    • /
    • 2016
  • Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data.

Probing the diversity of healthy oral microbiome with bioinformatics approaches

  • Moon, Ji-Hoi;Lee, Jae-Hyung
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.662-670
    • /
    • 2016
  • The human oral cavity contains a highly personalized microbiome essential to maintaining health, but capable of causing oral and systemic diseases. Thus, an in-depth definition of "healthy oral microbiome" is critical to understanding variations in disease states from preclinical conditions, and disease onset through progressive states of disease. With rapid advances in DNA sequencing and analytical technologies, population-based studies have documented the range and diversity of both taxonomic compositions and functional potentials observed in the oral microbiome in healthy individuals. Besides factors specific to the host, such as age and race/ethnicity, environmental factors also appear to contribute to the variability of the healthy oral microbiome. Here, we review bioinformatic techniques for metagenomic datasets, including their strengths and limitations. In addition, we summarize the interpersonal and intrapersonal diversity of the oral microbiome, taking into consideration the recent large-scale and longitudinal studies, including the Human Microbiome Project.

Emerging Co-signaling Networks in T Cell Immune Regulation

  • Jung, Keunok;Choi, Inhak
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.184-193
    • /
    • 2013
  • Co-signaling molecules are surface glycoproteins that positively or negatively regulate the T cell response to antigen. Co-signaling ligands and receptors crosstalk between the surfaces of antigen-presenting cells (APCs) and T cells, and modulate the ultimate magnitude and quality of T cell receptor (TCR) signaling. In the past 10 years, the field of co-signaling research has been advanced by the understanding of underlying mechanisms of the immune modulation led by newly identified co-signaling molecules and the successful preclinical and clinical trials targeting co-inhibitory molecules called immune checkpoints in the treatment of autoimmune diseases and cancers. In this review, we briefly describe the characteristics of well-known B7 co-signaling family members regarding the expression, functions and therapeutic implications and to introduce newly identified B7 members such as B7-H5, B7-H6, and B7-H7.

Membranes for the Guided Bone Regeneration

  • Lee, Sang-Woon;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제36권6호
    • /
    • pp.239-246
    • /
    • 2014
  • Many kinds of membrane have been used for the guided bone regeneration (GBR) technique. However, most membranes do not fulfill all requirements for the ideal membrane for the GBR technique. Among them, collagen membrane has been most widely used. However, its high price and weak tensile strength in wet condition are limitations for wide clinical application. Synthetic polymers have also been used for the GBR technique. Recently, silk based membrane has been considered as a membrane for the GBR technique. Despite many promising preclinical data for use of a silk membrane, clinical data regarding the silk membrane has been limited. However, silk based material has been used clinically as vessel-tie material and an electrospun silk membrane was applied successfully to patients. No adverse effect related to the silk suture has been reported. Considering that silk membrane can be provided to patients at a cheap price, its clinical application should be encouraged.

Targeted alpha therapy (TAT) for cancer using metallic radioisotopes

  • Kang, Chi Soo;Lee, Kyo Chul;Lee, Yong Jin
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.135-144
    • /
    • 2019
  • Targeted alpha therapy (TAT) based on metallic radionuclides has attracted a lot of attention lately due to its impressive therapeutic efficacy displayed in couple of clinical studies for cancer. Representative metallic radionuclides emitting alpha-particle include 225Ac, 213Bi, and 227Th, and there have been variety of TAT formulations based on different targeting moiety and chelating agents. In this review, we introduce strategies to label metallic radioisotopes with biomolecules and look at some of recent preclinical and clinical results of TAT for cancer.