DOI QR코드

DOI QR Code

Probing the diversity of healthy oral microbiome with bioinformatics approaches

  • Moon, Ji-Hoi (Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Lee, Jae-Hyung (Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University)
  • Received : 2016.09.23
  • Published : 2016.12.31

Abstract

The human oral cavity contains a highly personalized microbiome essential to maintaining health, but capable of causing oral and systemic diseases. Thus, an in-depth definition of "healthy oral microbiome" is critical to understanding variations in disease states from preclinical conditions, and disease onset through progressive states of disease. With rapid advances in DNA sequencing and analytical technologies, population-based studies have documented the range and diversity of both taxonomic compositions and functional potentials observed in the oral microbiome in healthy individuals. Besides factors specific to the host, such as age and race/ethnicity, environmental factors also appear to contribute to the variability of the healthy oral microbiome. Here, we review bioinformatic techniques for metagenomic datasets, including their strengths and limitations. In addition, we summarize the interpersonal and intrapersonal diversity of the oral microbiome, taking into consideration the recent large-scale and longitudinal studies, including the Human Microbiome Project.

Keywords

References

  1. Hamady M and Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19, 1141-1152 https://doi.org/10.1101/gr.085464.108
  2. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R and Gordon JI (2007) The human microbiome project. Nature 449, 804-810 https://doi.org/10.1038/nature06244
  3. Ursell LK, Metcalf JL, Parfrey LW and Knight R (2012) Defining the human microbiome. Nutr Rev Suppl 1, S38-44
  4. Wade WG (2013) The oral microbiome in health and disease. Pharmacol Res 69, 137-143 https://doi.org/10.1016/j.phrs.2012.11.006
  5. Zarco MF, Vess TJ and Ginsburg GS (2012) The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis 18, 109-120 https://doi.org/10.1111/j.1601-0825.2011.01851.x
  6. He J, Li Y, Cao Y, Xue J and Zhou X (2015) The oral microbiome diversity and its relation to human diseases. Folia Microbiol (Praha) 60, 69-80 https://doi.org/10.1007/s12223-014-0342-2
  7. Segata N, Haake SK, Mannon P et al (2012) Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13, R42 https://doi.org/10.1186/gb-2012-13-6-r42
  8. Gevers D, Pop M, Schloss PD and Huttenhower C (2012) Bioinformatics for the Human Microbiome Project. PLoS Comput Biol 8, e1002779 https://doi.org/10.1371/journal.pcbi.1002779
  9. Human Microbiome Project Consortium (2012b) A framework for human microbiome research. Nature 486, 215-221 https://doi.org/10.1038/nature11209
  10. Human Microbiome Project Consortium (2012a) Structure, function and diversity of the healthy human microbiome. Nature 486, 207-214 https://doi.org/10.1038/nature11234
  11. Huse SM, Ye Y, Zhou Y and Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequences clusters. PLoS One 7, e34242 https://doi.org/10.1371/journal.pone.0034242
  12. Li K, Bihan M and Methe BA (2013) Analyses of the stability and core taxonomic memberships of the human microbiome. PLoS One 8, e63139 https://doi.org/10.1371/journal.pone.0063139
  13. Zhou Y, Gao H, Mihindukulasuriya KA et al (2013) Biogeography of the ecosystems of the healthy human body. Genome Biol 14, R1 https://doi.org/10.1186/gb-2013-14-1-r1
  14. Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5, 209
  15. Oulas A, Pavloudi C, Polymenakou P et al (2015) Metage-nomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9, 75-88
  16. Woese CR and Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74, 5088-5090 https://doi.org/10.1073/pnas.74.11.5088
  17. Mizrahi-Man O, Davenport ER and Gilad Y (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS One 8, e53608 https://doi.org/10.1371/journal.pone.0053608
  18. Wang Q, Garrity GM, Tiedje JM and Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73, 5261-5267 https://doi.org/10.1128/AEM.00062-07
  19. Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relman DA and Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4, e1000255 https://doi.org/10.1371/journal.pgen.1000255
  20. Liu Z, DeSantis TZ, Andersen GL and Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36, e120 https://doi.org/10.1093/nar/gkn491
  21. Nossa CW, Oberdorf WE, Yang L et al (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16, 4135-4144 https://doi.org/10.3748/wjg.v16.i33.4135
  22. Claesson MJ, Wang Q, O'Sullivan O et al (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota com-position using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38, e200 https://doi.org/10.1093/nar/gkq873
  23. Tremblay J, Singh K, Fern A et al (2015) Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol 6, 771
  24. Morgulis A, Gertz EM, Schaffer AA and Agarwala R (2006) A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J Comput Biol 13, 1028-1040 https://doi.org/10.1089/cmb.2006.13.1028
  25. Sevinsky JR, Turnbaugh PJ, Walters WA et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335-336 https://doi.org/10.1038/nmeth.f.303
  26. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75, 7537-7541 https://doi.org/10.1128/AEM.01541-09
  27. Edgar RC, Haas BJ, Clemente JC, Quince C and Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200 https://doi.org/10.1093/bioinformatics/btr381
  28. Schloss PD and Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77, 3219-3226 https://doi.org/10.1128/AEM.02810-10
  29. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  30. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A and Dewhirst FE (2010) The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford) 2010:baq013
  31. Griffen AL, Beall CJ, Firestone ND et al (2011) CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS One 6, e19051 https://doi.org/10.1371/journal.pone.0019051
  32. Fu L, Niu B, Zhu Z, Wu S and Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150-3152 https://doi.org/10.1093/bioinformatics/bts565
  33. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-2461 https://doi.org/10.1093/bioinformatics/btq461
  34. Schloss PD and Handelsman J (2005) Introducing DOTUR, a Computer Program for Defining Operational Taxonomic Units and Estimating Species Richness. Appl Environ Microbiol 71,1501-1506 https://doi.org/10.1128/AEM.71.3.1501-1506.2005
  35. Cole JR, Wang Q, Fish JA et al (2013) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42, D633-642
  36. Kotamarti RM, Hahsler M, Raiford D, McGee M and Dunham MH (2010) Analyzing taxonomic classification using extensible Markov models. Bioinformatics 26, 2235-2241 https://doi.org/10.1093/bioinformatics/btq349
  37. Moon JH, Lee JH and Lee JY (2015) Subgingival microbiome in smokers and non-smokers in Korean chronic periodontitis patients. Mol Oral Microbiol 30, 227-241 https://doi.org/10.1111/omi.12086
  38. Lozupone C and Knight R (2005) UniFrac: a new phy-logenetic method for comparing microbial communities. Appl Environ Microbiol 71, 8228-8235 https://doi.org/10.1128/AEM.71.12.8228-8235.2005
  39. Li H and Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 https://doi.org/10.1093/bioinformatics/btp324
  40. Langmead B and Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359 https://doi.org/10.1038/nmeth.1923
  41. Kim Y, Koh I and Rho M (2014) Deciphering the human microbiome using next-generation sequencing data and bioinformatics approaches. Methods 79-80, 52-59
  42. Zerbino DR and Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821-829 https://doi.org/10.1101/gr.074492.107
  43. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ and Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19, 1117-1123 https://doi.org/10.1101/gr.089532.108
  44. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 https://doi.org/10.1186/2047-217X-1-18
  45. Peng Y, Leung HC, Yiu SM and Chin FY (2011) Meta-IDBA: a de Novo assembler for metagenomic data. Bioinformatics 27, i94-101 https://doi.org/10.1093/bioinformatics/btr216
  46. Afiahayati, Sato K and Sakakibara Y (2015) MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning. DNA Res 22, 69-77 https://doi.org/10.1093/dnares/dsu041
  47. Peng Y, Leung HC, Yiu SM and Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420-1428 https://doi.org/10.1093/bioinformatics/bts174
  48. Zhu W, Lomsadze A and Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38, e132 https://doi.org/10.1093/nar/gkq275
  49. Hyatt D, LoCascio PF, Hauser LJ and Uberbacher EC (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28, 2223-2230 https://doi.org/10.1093/bioinformatics/bts429
  50. Kelley DR, Liu B, Delcher AL, Pop M and Salzberg SL (2012) Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering. Nucleic Acids Res 40, e9 https://doi.org/10.1093/nar/gkr1067
  51. Rho M, Tang H and Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res 38, e191 https://doi.org/10.1093/nar/gkq747
  52. Trimble WL, Keegan KP, D'Souza M et al (2012) Short-read reading-frame predictors are not created equal: sequence error causes loss of signal. BMC Bioinformatics 13, 183 https://doi.org/10.1186/1471-2105-13-183
  53. Yok NG and Rosen GL (2011) Combining gene prediction methods to improve metagenomic gene annotation. BMC Bioinformatics 12, 20 https://doi.org/10.1186/1471-2105-12-20
  54. Finn RD, Coggill P, Eberhardt RY et al (2015) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44, D279-285
  55. Markowitz VM, Chen IM, Chu K et al (2014) IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res 42, D568-573 https://doi.org/10.1093/nar/gkt919
  56. Tatusov RL, Galperin MY, Natale DA and Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28, 33-36. https://doi.org/10.1093/nar/28.1.33
  57. Huang K, Brady A, Mahurkar A et al (2014) MetaRef: a pan-genomic database for comparative and community microbial genomics. Nucleic Acids Res 42, D617-624. https://doi.org/10.1093/nar/gkt1078
  58. Kanehisa M and Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30 https://doi.org/10.1093/nar/28.1.27
  59. Huerta-Cepas J, Szklarczyk D and Forslund K (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44, D286-293 https://doi.org/10.1093/nar/gkv1248
  60. Ye Y and Doak TG (2009) A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput Biol 5, e1000465 https://doi.org/10.1371/journal.pcbi.1000465
  61. Abubucker S, Segata N, Goll J et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8, e1002358 https://doi.org/10.1371/journal.pcbi.1002358
  62. Keegan KP, Glass EM and Meyer F (2016) MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function. Methods Mol Biol 1399, 207-233 https://doi.org/10.1007/978-1-4939-3369-3_13
  63. Marcotte H and Lavoie MC (1998) Oral Microbial Ecology and the Role of Salivary Immunoglobulin A. Microbiol Mol Biol Rev 62, 71-109
  64. Chen H and Jiang W (2014) Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol 5, 508
  65. Preza D, Olsen I, Willumsen T, Grinde B and Paster BJ (2009) Diversity and site-specificity of the oral microflora in the elderly. Eur J Clin Microbiol Infect Dis 28, 1033-1040 https://doi.org/10.1007/s10096-009-0743-3
  66. Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV and Kolter R (2014) Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio 1, e00129-10
  67. McDonald D, Birmingham A and Knight R (2015) Context and the human microbiome. Microbiome 3, 52 https://doi.org/10.1186/s40168-015-0117-2
  68. Nasidze I, Li J, Quinque D, Tang K and Stoneking M (2009) Global diversity in the human salivary microbiome. Genome Res 19, 636-643 https://doi.org/10.1101/gr.084616.108
  69. Nasidze I, Li J, Schroeder R, Creasey JL, Li M and Stoneking M (2011) High Diversity of the Saliva Microbiome in Batwa Pygmies. PLoS One 6, e23352 https://doi.org/10.1371/journal.pone.0023352
  70. Li J, Quinque D, Horz HP et al (2014) Comparative analysis of the human saliva microbiome from different climate zones: Alaska, Germany, and Africa. BMC Microbiol 14, 316 https://doi.org/10.1186/s12866-014-0316-1
  71. Mason MR, Nagaraja HN, Camerlengo T, Joshi V and Kumar PS (2013) Deep sequencing identifies ethnicity-specific bacterial signatures in the oral microbiome. PLoS One 8, e77287 https://doi.org/10.1371/journal.pone.0077287
  72. Rylev M and Kilian M (2008) Prevalence and distribution of principal periodontal pathogens worldwide. J Clin Periodontol 35(8 Suppl), 346-361
  73. Haffajee AD, Bogren A, Hasturk H, Feres M, Lopez NJ and Socransky SS (2004) Subgingival microbiota of chronic periodontitis subjects from different geographic locations. J Clin Periodontol 31, 996-1002 https://doi.org/10.1111/j.1600-051X.2004.00597.x
  74. Kim TS, Kang NW, Lee SB, Eickholz P, Pretzl B and Kim CK (2009) Differences in subgingival microflora of Korean and German periodontal patients. Arch Oral Biol 54, 223-229 https://doi.org/10.1016/j.archoralbio.2008.10.005
  75. Miller MA and Cappuccio FP (2007) Ethnicity and inflammatory pathways-implications for vascular disease, vascular risk and therapeutic intervention. Curr Med Chem 14, 1409-1425 https://doi.org/10.2174/092986707780831131
  76. Nguyen DP, Genc M, Vardhana S, Babula O, Onderdonk A and Witkin SS (2004) Ethnic differences of polymorphisms in cytokine and innate immune system genes in pregnant women. Obstetrics and Gynecology 104, 293-300 https://doi.org/10.1097/01.AOG.0000133486.85400.5e
  77. Lavelle CL (1970) Crowding and spacing within the human dental arch of different racial groups. Arch Oral Biol 15, 1101-1103 https://doi.org/10.1016/0003-9969(70)90123-8
  78. Lavelle CL (1971) Mandibular molar tooth configurations in different racial groups. J Dent Res 50, 1353 https://doi.org/10.1177/00220345710500054501
  79. Zaura E, Nicu EA, Krom BP and Keijser BJ (2014) Acquiring and maintaining a normal oral microbiome: current perspective. Front Cell Infect Microbiol 4, 85
  80. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107, 11971-11975 https://doi.org/10.1073/pnas.1002601107
  81. Lif Holgerson P, Harnevik L, Hernell O, Tanner AC and Johansson I (2011) Mode of birth delivery affects oral microbiota in infants. J Dent Res 90, 1183-1188 https://doi.org/10.1177/0022034511418973
  82. Holgerson PL, Vestman NR, Claesson R et al (2013) Oral microbial profile discriminates breast-fed from formula-fed infants. J Pediatr Gastroenterol Nutr 56, 127-136 https://doi.org/10.1097/MPG.0b013e31826f2bc6
  83. Vestman NR, Timby N, Holgerson PL et al (2013) Characterization and in vitro properties of oral lactobacilli in breastfed infants. BMC Microbiol 13, 193 https://doi.org/10.1186/1471-2180-13-193
  84. Stahringer SS, Clemente JC, Corley RP et al (2012) Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res 22, 2146-2152 https://doi.org/10.1101/gr.140608.112
  85. Lazarevic V, Whiteson K, Hernandez D, Francois P and Schrenzel J (2010) Study of inter-and intra-individual variations in the salivary microbiota. BMC Genomics 11, 523 https://doi.org/10.1186/1471-2164-11-523
  86. Flores GE, Caporaso JG, Henley JB et al (2014) Temporal variability is a personalized feature of the human microbiome. Genome Biol 15, 531 https://doi.org/10.1186/s13059-014-0531-y
  87. Xu X, He J, Xue J et al (2015) Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol 17, 699-710 https://doi.org/10.1111/1462-2920.12502
  88. Cephas KD, Kim J, Mathai RA et al (2011) Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS One 6, e23503 https://doi.org/10.1371/journal.pone.0023503
  89. Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC and Keijser BJ (2011) Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genomics 4, 22 https://doi.org/10.1186/1755-8794-4-22
  90. McLean JS (2014) Advancements toward a systems level understanding of the human oral microbiome. Front Cell Infect Microbiol 4, 98
  91. Lasken RS and McLean JS (2014) Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 15, 577-584
  92. Dewhirst FE, ChenT, Izard J et al (2010) The human oral microbiome. J Bacteriol 192, 5002-5017 https://doi.org/10.1128/JB.00542-10
  93. Clingenpeel S, Schwientek P, Hugenholtz P and Woyke T (2014) Effects of sample treatments on genome recovery via single-cell genomics. ISME J 8, 2546-9 https://doi.org/10.1038/ismej.2014.92
  94. Solden L, Lloyd K and Wrighton K (2016) The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr Opin Microbiol 31, 217-226 https://doi.org/10.1016/j.mib.2016.04.020
  95. Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62, 716-721 https://doi.org/10.1099/ijs.0.038075-0
  96. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590-596 https://doi.org/10.1093/nar/gks1219
  97. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72, 5069-5072 https://doi.org/10.1128/AEM.03006-05

Cited by

  1. The periodontal war: microbes and immunity vol.75, pp.1, 2017, https://doi.org/10.1111/prd.12222
  2. A cytometric approach to follow variation and dynamics of the salivary microbiota 2018, https://doi.org/10.1016/j.ymeth.2017.08.009
  3. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases vol.93, pp.3, 2018, https://doi.org/10.1111/brv.12407
  4. The oral microbiome in oral lichen planus during a 1-year randomized clinical trial pp.1354523X, 2018, https://doi.org/10.1111/odi.12961
  5. Insights into the human oral microbiome vol.200, pp.4, 2018, https://doi.org/10.1007/s00203-018-1505-3