Browse > Article
http://dx.doi.org/10.4110/in.2013.13.5.184

Emerging Co-signaling Networks in T Cell Immune Regulation  

Jung, Keunok (Department of Microbiology and Immunology, Advanced Cancer Research of Multiple Myeloma, Inje University College of Medicine)
Choi, Inhak (Department of Microbiology and Immunology, Advanced Cancer Research of Multiple Myeloma, Inje University College of Medicine)
Publication Information
IMMUNE NETWORK / v.13, no.5, 2013 , pp. 184-193 More about this Journal
Abstract
Co-signaling molecules are surface glycoproteins that positively or negatively regulate the T cell response to antigen. Co-signaling ligands and receptors crosstalk between the surfaces of antigen-presenting cells (APCs) and T cells, and modulate the ultimate magnitude and quality of T cell receptor (TCR) signaling. In the past 10 years, the field of co-signaling research has been advanced by the understanding of underlying mechanisms of the immune modulation led by newly identified co-signaling molecules and the successful preclinical and clinical trials targeting co-inhibitory molecules called immune checkpoints in the treatment of autoimmune diseases and cancers. In this review, we briefly describe the characteristics of well-known B7 co-signaling family members regarding the expression, functions and therapeutic implications and to introduce newly identified B7 members such as B7-H5, B7-H6, and B7-H7.
Keywords
Co-signaling molecule; B7 family; Co-stimulation; Co-inhibition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Van Parijs, L. and A. K. Abbas. 1998. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280: 243-248.   DOI
2 Chen, L. and D. B. Flies. 2013. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13: 227-242.   DOI
3 Pardoll, D. M. 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12: 252-264.   DOI
4 Saito, T., T. Yokosuka, and A. Hashimoto-Tane. 2010. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett. 584: 4865-4871.   DOI
5 Greenwald, R. J., G. J. Freeman, and A. H. Sharpe. 2005. The B7 family revisited. Annu. Rev. Immunol. 23: 515-548.   DOI
6 Isakov, N. and A. Altman. 2012. PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors. Front. Immunol. 3: 273.
7 Rudd, C. E. and H. Schneider. 2003. Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat. Rev. Immunol. 3: 544-556.   DOI
8 Viola, A. and A. Lanzavecchia. 1996. T cell activation determined by T cell receptor number and tunable thresholds. Science 273: 104-106.   DOI
9 Boise, L. H., A. J. Minn, P. J. Noel, C. H. June, M. A. Accavitti, T. Lindsten, and C. B. Thompson. 1995. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3: 87-98.   DOI
10 Rulifson, I. C., A. I. Sperling, P. E. Fields, F. W. Fitch, and J. A. Bluestone. 1997. CD28 costimulation promotes the production of Th2 cytokines. J. Immunol. 158: 658-665.
11 Zhang, R., A. Huynh, G. Whitcher, J. Chang, J. S. Maltzman, and L. A. Turka. 2013. An obligate cell-intrinsic function for CD28 in Tregs. J. Clin. Invest. 123: 580-593.
12 Walunas, T. L., D. J. Lenschow, C. Y. Bakker, P. S. Linsley, G. J. Freeman, J. M. Green, C. B. Thompson, and J. A. Bluestone. 1994. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1: 405-413.   DOI
13 Salama, A. K. and F. S. Hodi. 2011. Cytotoxic T-lymphocyte- associated antigen-4. Clin. Cancer Res. 17: 4622-4628.   DOI
14 Qureshi, O. S., Y. Zheng, K. Nakamura, K. Attridge, C. Manzotti, E. M. Schmidt, J. Baker, L. E. Jeffery, S. Kaur, Z. Briggs, T. Z. Hou, C. E. Futter, G. Anderson, L. S. Walker, and D. M. Sansom. 2011. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332: 600-603.   DOI
15 Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057-1061.   DOI
16 Fontenot, J. D., M. A. Gavin, and A. Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4: 330-336.   DOI
17 Paust, S., L. Lu, N. McCarty, and H. Cantor. 2004. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc. Natl. Acad. Sci. USA 101: 10398- 10403.   DOI
18 Grohmann, U., C. Orabona, F. Fallarino, C. Vacca, F. Calcinaro, A. Falorni, P. Candeloro, M. L. Belladonna, R. Bianchi, M. C. Fioretti, and P. Puccetti. 2002. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3: 1097-1101.   DOI
19 Fallarino, F., U. Grohmann, K. W. Hwang, C. Orabona, C. Vacca, R. Bianchi, M. L. Belladonna, M. C. Fioretti, M. L. Alegre, and P. Puccetti. 2003. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4: 1206-1212.   DOI
20 Munn, D. H., M. D. Sharma, and A. L. Mellor. 2004. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172: 4100-4110.   DOI
21 Keir, M. E., M. J. Butte, G. J. Freeman, and A. H. Sharpe. 2008. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26: 677-704.   DOI
22 Butte, M. J., M. E. Keir, T. B. Phamduy, A. H. Sharpe, and G. J. Freeman. 2007. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27: 111-122.   DOI
23 Shlapatska, L. M., S. V. Mikhalap, A. G. Berdova, O. M. Zelensky, T. J. Yun, K. E. Nichols, E. A. Clark, and S. P. Sidorenko. 2001. CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A. J. Immunol. 166: 5480-5487.   DOI
24 Agata, Y., A. Kawasaki, H. Nishimura, Y. Ishida, T. Tsubata, H. Yagita, and T. Honjo. 1996. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8: 765-772.   DOI
25 Dong, H., S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen. 2002. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8: 793-800.   DOI
26 Blank, C., I. Brown, A. C. Peterson, M. Spiotto, Y. Iwai, T. Honjo, and T. F. Gajewski. 2004. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 64: 1140-1145.   DOI
27 Mu, C. Y., J. A. Huang, Y. Chen, C. Chen, and X. G. Zhang. 2011. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med. Oncol. 28: 682-688.   DOI
28 Taube, J. M., R. A. Anders, G. D. Young, H. Xu, R. Sharma, T. L. McMiller, S. Chen, A. P. Klein, D. M. Pardoll, S. L. Topalian, and L. Chen. 2012. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4: 127ra137.
29 Thompson, R. H., S. M. Kuntz, B. C. Leibovich, H. Dong, C. M. Lohse, W. S. Webster, S. Sengupta, I. Frank, A. S. Parker, H. Zincke, M. L. Blute, T. J. Sebo, J. C. Cheville, and E. D. Kwon. 2006. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow- up. Cancer Res. 66: 3381-3385.   DOI
30 Boland, J. M., E. D. Kwon, S. M. HH. Tang, P. Yang, and M. C. Aubry. 2013. Tumor B7-H1 and B7-H3 expression in squamous cell carcinoma of the lung. Clin. Lung Cancer 14: 157-163.   DOI
31 Wang, L., Q. Ma, X. Chen, K. Guo, J. Li, and M. Zhang. 2010. Clinical significance of B7-H1 and B7-1 expressions in pancreatic carcinoma. World J. Surg. 34: 1059-1065.   DOI
32 Nakanishi, J., Y. Wada, K. Matsumoto, M. Azuma, K. Kikuchi, and S. Ueda. 2007. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol. Immunother. 56: 1173-1182.   DOI
33 Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682-687.   DOI
34 Dong, H., G. Zhu, K. Tamada, and L. Chen. 1999. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5: 1365- 1369.   DOI
35 Day, C. L., D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S. Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. DePierres, Z. Mncube, J. Duraiswamy, B. Zhu, Q. Eichbaum, M. Altfeld, E. J. Wherry, H. M. Coovadia, P. J. Goulder, P. Klenerman, R. Ahmed, G. J. Freeman, and B. D. Walker. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350-354.   DOI
36 West, E. E., H. T. Jin, A. U. Rasheed, P. Penaloza-Macmaster, S. J. Ha, W. G. Tan, B. Youngblood, G. J. Freeman, K. A. Smith, and R. Ahmed. 2013. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest. 123: 2604-2615.   DOI
37 Shin, T., K. Yoshimura, T. Shin, E. B. Crafton, H. Tsuchiya, F. Housseau, H. Koseki, R. D. Schulick, L. Chen, and D. M. Pardoll. 2005. In vivo costimulatory role of B7-DC in tuning T helper cell 1 and cytotoxic T lymphocyte responses. J. Exp. Med. 201: 1531-1541.   DOI
38 Francisco, L. M., V. H. Salinas, K. E. Brown, V. K. Vanguri, G. J. Freeman, V. K. Kuchroo, and A. H. Sharpe. 2009. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206: 3015-3029.   DOI
39 Gajewski, T. F., J. Louahed, and V. G. Brichard. 2010. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16: 399-403.   DOI
40 Brahmer, J. R., C. G. Drake, I. Wollner, J. D. Powderly, J. Picus, W. H. Sharfman, E. Stankevich, A. Pons, T. M. Salay, T. L. McMiller, M. M. Gilson, C. Wang, M. Selby, J. M. Taube, R. Anders, L. Chen, A. J. Korman, D. M. Pardoll, I. Lowy, and S. L. Topalian. 2010. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28: 3167-3175.   DOI
41 van Elsas, A., A. A. Hurwitz, and J. P. Allison. 1999. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/ macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190: 355-366.   DOI
42 Li, B., M. VanRoey, C. Wang, T. H. Chen, A. Korman, and K. Jooss. 2009. Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor--secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin. Cancer Res. 15: 1623- 1634.   DOI
43 Swallow, M. M., J. J. Wallin, and W. C. Sha. 1999. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity 11: 423-432.   DOI
44 Ling, V., P. W. Wu, H. F. Finnerty, K. M. Bean, V. Spaulding, L. A. Fouser, J. P. Leonard, S. E. Hunter, R. Zollner, J. L. Thomas, J. S. Miyashiro, K. A. Jacobs, and M. Collins. 2000. Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor. J. Immunol. 164: 1653-1657.   DOI
45 Yoshinaga, S. K., J. S. Whoriskey, S. D. Khare, U. Sarmiento, J. Guo, T. Horan, G. Shih, M. Zhang, M. A. Coccia, T. Kohno, A. Tafuri-Bladt, D. Brankow, P. Campbell, D. Chang, L. Chiu, T. Dai, G. Duncan, G. S. Elliott, A. Hui, S. M. McCabe, S. Scully, A. Shahinian, C. L. Shaklee, G. Van, T. W. Mak, and G. Senaldi. 1999. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402: 827-832.   DOI
46 Brodie, D., A. V. Collins, A. Iaboni, J. A. Fennelly, L. M. Sparks, X. N. Xu, P. A. van der Merwe, and S. J. Davis. 2000. LICOS, a primordial costimulatory ligand? Curr. Biol. 10: 333-336.   DOI
47 Aicher, A., M. Hayden-Ledbetter, W. A. Brady, A. Pezzutto, G. Richter, D. Magaletti, S. Buckwalter, J. A. Ledbetter, and E. A. Clark. 2000. Characterization of human inducible costimulator ligand expression and function. J. Immunol. 164: 4689-4696.   DOI
48 Nakazawa, A., I. Dotan, J. Brimnes, M. Allez, L. Shao, F. Tsushima, M. Azuma, and L. Mayer. 2004. The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology 126: 1347-1357.   DOI
49 Wiendl, H., M. Mitsdoerffer, D. Schneider, A. Melms, H. Lochmuller, R. Hohlfeld, and M. Weller. 2003. Muscle fibres and cultured muscle cells express the B7.1/2-related inducible co-stimulatory molecule, ICOSL: implications for the pathogenesis of inflammatory myopathies. Brain 126: 1026-1035.   DOI
50 Wang, S., G. Zhu, A. I. Chapoval, H. Dong, K. Tamada, J. Ni, and L. Chen. 2000. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood 96: 2808-2813.
51 Beier, K. C., A. Hutloff, A. M. Dittrich, C. Heuck, A. Rauch, K. Buchner, B. Ludewig, H. D. Ochs, H. W. Mages, and R. A. Kroczek. 2000. Induction, binding specificity and function of human ICOS. Eur. J. Immunol. 30: 3707-3717.   DOI
52 Mages, H. W., A. Hutloff, C. Heuck, K. Buchner, H. Himmelbauer, F. Oliveri, and R. A. Kroczek. 2000. Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur. J. Immunol. 30: 1040-1047.   DOI
53 Kopf, M., A. J. Coyle, N. Schmitz, M. Barner, A. Oxenius, A. Gallimore, J. C. Gutierrez-Ramos, and M. F. Bachmann. 2000. Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J. Exp. Med. 192: 53-61.   DOI
54 Yoshinaga, S. K., M. Zhang, J. Pistillo, T. Horan, S. D. Khare, K. Miner, M. Sonnenberg, T. Boone, D. Brankow, T. Dai, J. Delaney, H. Han, A. Hui, T. Kohno, R. Manoukian, J. S. Whoriskey, and M. A. Coccia. 2000. Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int. Immunol. 12: 1439-1447.   DOI
55 Coyle, A. J., S. Lehar, C. Lloyd, J. Tian, T. Delaney, S. Manning, T. Nguyen, T. Burwell, H. Schneider, J. A. Gonzalo, M. Gosselin, L. R. Owen, C. E. Rudd, and J. C. Gutierrez-Ramos. 2000. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13: 95-105.   DOI
56 Sharpe, A. H. and G. J. Freeman. 2002. The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126.   DOI
57 Sperling, A. I. 2001. ICOS costimulation: is it the key to selective immunotherapy? Clin. Immunol. 100: 261-262.   DOI
58 Akbari, O., G. J. Freeman, E. H. Meyer, E. A. Greenfield, T. T. Chang, A. H. Sharpe, G. Berry, R. H. DeKruyff, and D. T. Umetsu. 2002. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8: 1024-1032.   DOI
59 Riella, L. V., S. Dada, L. Chabtini, B. Smith, L. Huang, P. Dakle, B. Mfarrej, F. D'Addio, L. T. Adams, N. Kochupurakkal, A. Vergani, P. Fiorina, A. L. Mellor, A. H. Sharpe, H. Yagita, and I. Guleria. 2013. B7h (ICOS-L) maintains tolerance at the fetomaternal interface. Am. J. Pathol. 182: 2204-2213.   DOI
60 Hu, Y. L., D. P. Metz, J. Chung, G. Siu, and M. Zhang. 2009. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J. Immunol. 182: 1421-1428.   DOI
61 Yao, S., Y. Zhu, G. Zhu, M. Augustine, L. Zheng, D. J. Goode, M. Broadwater, W. Ruff, S. Flies, H. Xu, D. Flies, L. Luo, S. Wang, and L. Chen. 2011. B7-h2 is a costimulatory ligand for CD28 in human. Immunity 34: 729-740.   DOI
62 Chapoval, A. I., J. Ni, J. S. Lau, R. A. Wilcox, D. B. Flies, D. Liu, H. Dong, G. L. Sica, G. Zhu, K. Tamada, and L. Chen. 2001. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol. 2: 269-274.   DOI
63 Sun, M., S. Richards, D. V. Prasad, X. M. Mai, A. Rudensky, and C. Dong. 2002. Characterization of mouse and human B7-H3 genes. J. Immunol. 168: 6294-6297.   DOI
64 Steinberger, P., O. Majdic, S. V. Derdak, K. Pfistershammer, S. Kirchberger, C. Klauser, G. Zlabinger, W. F. Pickl, J. Stockl, and W. Knapp. 2004. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J. Immunol. 172: 2352-2359.   DOI
65 Xu, H., I. Y. Cheung, H. F. Guo, and N. K. Cheung. 2009. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 69: 6275-6281.   DOI
66 Chen, C., Y. Shen, Q. X. Qu, X. Q. Chen, X. G. Zhang, and J. A. Huang. 2013. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp. Cell Res. 319: 96-102.   DOI
67 Zhao, X., D. C. Li, X. G. Zhu, W. J. Gan, Z. Li, F. Xiong, Z. X. Zhang, G. B. Zhang, X. G. Zhang, and H. Zhao. 2013. B7-H3 overexpression in pancreatic cancer promotes tumor progression. Int. J. Mol. Med. 31: 283-291.   DOI
68 Zhang, G., J. Wang, J. Kelly, G. Gu, J. Hou, Y. Zhou, H. P. Redmond, J. H. Wang, and X. Zhang. 2010. B7-H3 augments the inflammatory response and is associated with human sepsis. J. Immunol. 185: 3677-3684.   DOI
69 Zhang, G., J. Hou, J. Shi, G. Yu, B. Lu, and X. Zhang. 2008. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology 123: 538-546.   DOI
70 Chen, X., G. Zhang, Y. Li, X. Feng, F. Wan, L. Zhang, J. Wang, and X. Zhang. 2009. Circulating B7-H3(CD276) elevations in cerebrospinal fluid and plasma of children with bacterial meningitis. J. Mol. Neurosci. 37: 86-94.   DOI
71 Hashiguchi, M., H. Kobori, P. Ritprajak, Y. Kamimura, H. Kozono, and M. Azuma. 2008. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc. Natl. Acad. Sci. USA 105: 10495-10500.   DOI
72 Brunner, A., S. Hinterholzer, P. Riss, G. Heinze, and H. Brustmann. 2012. Immunoexpression of B7-H3 in endometrial cancer: relation to tumor T-cell infiltration and prognosis. Gynecol. Oncol. 124: 105-111.   DOI
73 Sun, J., L. J. Chen, G. B. Zhang, J. T. Jiang, M. Zhu, Y. Tan, H. T. Wang, B. F. Lu, and X. G. Zhang. 2010. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol. Immunother. 59: 1163-1171.   DOI
74 Katayama, A., M. Takahara, K. Kishibe, T. Nagato, I. Kunibe, A. Katada, T. Hayashi, and Y. Harabuchi. 2011. Expression of B7-H3 in hypopharyngeal squamous cell carcinoma as a predictive indicator for tumor metastasis and prognosis. Int. J. Oncol. 38: 1219-1226.
75 Li, Z. Y., X. H. Zhang, Y. Chen, J. G. Guo, K. Sai, Q. Y. Yang, Z. P. Chen, and Y. G. Mou. 2013. Clinical significance of B7-H4 expression in matched non-small cell lung cancer brain metastases and primary tumors. Onco. Targets Ther. 6: 869-875.
76 Sica, G. L., I. H. Choi, G. Zhu, K. Tamada, S. D. Wang, H. Tamura, A. I. Chapoval, D. B. Flies, J. Bajorath, and L. Chen. 2003. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18: 849-861.   DOI
77 Prasad, D. V., S. Richards, X. M. Mai, and C. Dong. 2003. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity 18: 863-873.   DOI
78 Mugler, K. C., M. Singh, B. Tringler, K. C. Torkko, W. Liu, J. Papkoff, and K. R. Shroyer. 2007. B7-h4 expression in a range of breast pathology: correlation with tumor T-cell infiltration. Appl. Immunohistochem. Mol. Morphol. 15: 363-370.   DOI
79 Zhu, J., B. F. Chu, Y. P. Yang, S. L. Zhang, M. Zhuang, W. J. Lu, and Y. B. Liu. 2013. B7-H4 expression is associated with cancer progression and predicts patient survival in human thyroid cancer. Asian Pac. J. Cancer Prev. 14: 3011-3015.   DOI
80 Fauci, J. M., J. M. Straughn, Jr., S. Ferrone, and D. J. Buchsbaum. 2012. A review of B7-H3 and B7-H4 immune molecules and their role in ovarian cancer. Gynecol Oncol. 127: 420-425.   DOI
81 Chen, L. J., J. Sun, H. Y. Wu, S. M. Zhou, Y. Tan, M. Tan, B. E. Shan, B. F. Lu, and X. G. Zhang. 2011. B7-H4 expression associates with cancer progression and predicts patient's survival in human esophageal squamous cell carcinoma. Cancer Immunol. Immunother. 60: 1047-1055.   DOI
82 Cheng, L., J. Jiang, R. Gao, S. Wei, F. Nan, S. Li, and B. Kong. 2009. B7-H4 expression promotes tumorigenesis in ovarian cancer. Int. J. Gynecol. Cancer 19: 1481-1486.   DOI
83 Kryczek, I., L. Zou, P. Rodriguez, G. Zhu, S. Wei, P. Mottram, M. Brumlik, P. Cheng, T. Curiel, L. Myers, A. Lackner, X. Alvarez, A. Ochoa, L. Chen, and W. Zou. 2006. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203: 871-881.   DOI
84 Zhu, G., M. M. Augustine, T. Azuma, L. Luo, S. Yao, S. Anand, A. C. Rietz, J. Huang, H. Xu, A. S. Flies, S. J. Flies, K. Tamada, M. Colonna, J. M. van Deursen, and L. Chen. 2009. B7-H4-deficient mice display augmented neutrophilmediated innate immunity. Blood 113: 1759-1767.   DOI
85 Qian, Y., B. Hong, L. Shen, Z. Wu, H. Yao, and L. Zhang. 2013. B7-H4 enhances oncogenicity and inhibits apoptosis in pancreatic cancer cells. Cell Tissue Res. 353: 139-151.   DOI
86 Zhang, L., H. Wu, D. Lu, G. Li, C. Sun, H. Song, J. Li, T. Zhai, L. Huang, C. Hou, W. Wang, B. Zhou, S. Chen, B. Lu, and X. Zhang. 2013. The costimulatory molecule B7-H4 promote tumor progression and cell proliferation through translocating into nucleus. Oncogene. In press: http://www. nature.com/onc/journal/vaop/ncurrent/full/onc2012600.
87 Wang, L., R. Rubinstein, J. L. Lines, A. Wasiuk, C. Ahonen, Y. Guo, L. F. Lu, D. Gondek, Y. Wang, R. A. Fava, A. Fiser, S. Almo, and R. J. Noelle. 2011. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208: 577-592.   DOI
88 Ceeraz, S., E. C. Nowak, and R. J. Noelle. 2013. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. In press: http://dx.doi.org/10.1016/j.it. 2013.07.003.
89 Aloia, L., S. Parisi, L. Fusco, L. Pastore, and T. Russo. 2010. Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells. J. Biol. Chem. 285: 7776-7783.   DOI
90 Sakr, M. A., T. Takino, T. Domoto, H. Nakano, R. W. Wong, M. Sasaki, Y. Nakanuma, and H. Sato. 2010. GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase. Cancer Sci. 101: 2368-2374.   DOI
91 Brandt, C. S., M. Baratin, E. C. Yi, J. Kennedy, Z. Gao, B. Fox, B. Haldeman, C. D. Ostrander, T. Kaifu, C. Chabannon, A. Moretta, R. West, W. Xu, E. Vivier, and S. D. Levin. 2009. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206: 1495-1503.   DOI
92 Fiegler, N., S. Textor, A. Arnold, A. Rolle, I. Oehme, K. Breuhahn, G. Moldenhauer, M. Witzens-Harig, and A. Cerwenka. 2013. Downregulation of the activating NKp30 ligand B7-H6 by HDAC inhibitors impairs tumor cell recognition by NK cells. Blood 122: 684-693.   DOI
93 Pogge von Strandmann, E., V. R. Simhadri, B. von Tresckow, S. Sasse, K. S. Reiners, H. P. Hansen, A. Rothe, B. Boll, V. L. Simhadri, P. Borchmann, P. J. McKinnon, M. Hallek, and A. Engert. 2007. Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27: 965-974.   DOI
94 Sasaki, T., E. C. Gan, A. Wakeham, S. Kornbluth, T. W. Mak, and H. Okada. 2007. HLA-B-associated transcript 3 (Bat3)/ Scythe is essential for p300-mediated acetylation of p53. Genes. Dev. 21: 848-861.   DOI
95 Flajnik, M. F., T. Tlapakova, M. F. Criscitiello, V. Krylov, and Y. Ohta. 2012. Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC. Immunogenetics 64: 571-590.   DOI
96 Correia, D. V., M. Fogli, K. Hudspeth, M. G. da Silva, D. Mavilio, and B. Silva-Santos. 2011. Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118: 992-1001.   DOI
97 Delahaye, N. F., S. Rusakiewicz, I. Martins, C. Menard, S. Roux, L. Lyonnet, P. Paul, M. Sarabi, N. Chaput, M. Semeraro, V. Minard-Colin, V. Poirier-Colame, K. Chaba, C. Flament, V. Baud, H. Authier, S. Kerdine-Romer, M. Pallardy, I. Cremer, L. Peaudecerf, B. Rocha, D. Valteau-Couanet, J. C. Gutierrez, J. A. Nunes, F. Commo, S. Bonvalot, N. Ibrahim, P. Terrier, P. Opolon, C. Bottino, A. Moretta, J. Tavernier, P. Rihet, J. M. Coindre, J. Y. Blay, N. Isambert, J. F. Emile, E. Vivier, A. Lecesne, G. Kroemer, and L. Zitvogel. 2011. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med. 17: 700-707.   DOI
98 Mager, D. L., D. G. Hunter, M. Schertzer, and J. D. Freeman. 1999. Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics 59: 255-263.   DOI
99 Zhu, Y., S. Yao, B. P. Iliopoulou, X. Han, M. M. Augustine, H. Xu, R. T. Phennicie, S. J. Flies, M. Broadwater, W. Ruff, J. M. Taube, L. Zheng, L. Luo, G. Zhu, J. Chen, and L. Chen. 2013. B7-H5 costimulates human T cells via CD28H. Nat. Commun. 4: 2043.