
BMB
   Reports

BMB Rep. 2016; 49(12): 662-670
www.bmbreports.org

*Corresponding authors. Jae-Hyung Lee, Tel: +82-2-961-9290; Fax: 
+82-2-962-0598; E-mail: jaehlee@khu.ac.kr, Ji-Hoi Moon, Tel: 
+82-2-961-0795; Fax: +82-2-962-0598; E-mail: prudence75@
khu.ac.kr

https://doi.org/10.5483/BMBRep.2016.49.12.164

Received 23 September 2016

Keywords: Bioinformatics, Diversity, Human Microbiome Project 
(HMP), Next-generation Sequencing (NGS), Oral microbiome

ISSN: 1976-670X (electronic edition)
Copyright ⓒ 2016 by the The Korean Society for Biochemistry and Molecular Biology

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li-
censes/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Probing the diversity of healthy oral microbiome with 
bioinformatics approaches
Ji-Hoi Moon* & Jae-Hyung Lee*

Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Department of Life and Nanopharmaceutical Sciences, 
Kyung Hee University, Seoul 02447, Korea

The human oral cavity contains a highly personalized 
microbiome essential to maintaining health, but capable of 
causing oral and systemic diseases. Thus, an in-depth definition 
of “healthy oral microbiome” is critical to understanding 
variations in disease states from preclinical conditions, and 
disease onset through progressive states of disease. With rapid 
advances in DNA sequencing and analytical technologies, 
population-based studies have documented the range and 
diversity of both taxonomic compositions and functional 
potentials observed in the oral microbiome in healthy 
individuals. Besides factors specific to the host, such as age 
and race/ethnicity, environmental factors also appear to 
contribute to the variability of the healthy oral microbiome. 
Here, we review bioinformatic techniques for metagenomic 
datasets, including their strengths and limitations. In addition, 
we summarize the interpersonal and intrapersonal diversity of 
the oral microbiome, taking into consideration the recent 
large-scale and longitudinal studies, including the Human 
Microbiome Project. [BMB Reports 2016; 49(12): 662-670]

INTRODUCTION

The human microbiota (the collection of microbes that live on 
and inside us) consists of a wide range of microorganisms 
whose aggregate membership exceeds the human somatic and 
germ cells by at least an order of magnitude (1, 2). The 
collection of genes in the microbiota is called the human 
microbiome (2); however, “microbiota” and “microbiome” are 
often used interchangeably (3). One of the most clinically 
relevant microbial habitats, the human oral cavity is colonized 

by a personalized set of microorganisms, including bacteria, 
archaea, fungi, and viruses (4). Under healthy conditions, the 
oral microbiota lives in harmony with the host, similar to other 
body sites. The host provides an environment wherein the 
microbiome flourish, in turn keeping their host healthy (5). 
Conversely, the oral microbiome is also considered a key 
cause of oral diseases, including dental caries and periodontal 
diseases, as well as many systemic diseases such as diabetes 
and cardiovascular diseases (5, 6). Because of its crucial role in 
oral and systemic health, the oral microbiome has become an 
essential part of microbiomics.

An in-depth definition of a healthy microbiome is an 
indispensable step toward detecting significant variations in 
disease states and pre-clinical conditions, as well as un-
derstanding the disease onset and progression (7). The advent 
of next generation sequencing (NGS) or high-throughput 
sequencing has revolutionized the field of microbiome 
analysis, providing the tools necessary to address the issue (8). 
This prompted the launch of the NIH's Human Microbiome 
Project (HMP), constructed as a large, genome-scale community 
research project (NIH HMP Working Group, 2009). Over 200 
healthy adults were enrolled, and samples were collected from 
15 to 18 body sites, including oral, stool, skin, nasal, and 
vaginal areas, over a period of 1 to 3 visits (9). Besides two 
major scientific reports (9, 10), several companion papers 
analyzed the HMP oral datasets (7, 11-13), revealing great 
variability of the oral microbiome among and within healthy 
individuals. Furthermore, other recent large-scale and longitudinal 
studies have augmented our view of the oral microbiome, 
beyond that of the HMP.

In this paper, we review bioinformatic techniques for 
metagenomic datasets, including microbial community profiling, 
and highlight the strengths and weaknesses of the experimental 
approaches. We also summarize important findings that lead 
to the current understanding of the the range of healthy 
microbial diveristy. Although viruses, fungi, archaea and 
protozoa form a part of the normal microbiome (4), majority of 
the research is concentrated on the domain Bacteria. 
Therefore, we will focus exclusively on oral bacteria in this 
review.
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Name 16S rRNA coverage Database URL (reference)

CORE Human Oral Bacteria http://microbiome.osu.edu/ (32)
RDP Archaea and Bacteria https://rdp.cme.msu.edu/ (33)
Human Oral Microbiolome Database Human Oral Bacteria http://www.homd.org/index.php (65)
EzTaxon-e Archaea and Bacteria http://www.ezbiocloud.net/eztaxon (95)
SILVA Archaea and Bacteria https://www.arb-silva.de/ (96)
Greengenes Archaea and Bacteria http://greengenes.secondgenome.com/ (97)

Table 1. A list of 16S ribosomal RNA database

BIOINFORMATIC ANALYSIS OF MICROBIOME 
SEQUENCE DATA

Two distinct metagenomics approaches are commonly used: 
marker gene metagenomics and full shotgun metagenomics. 
Marker gene metagenomics is a fast and cost-effective way to 
obtain a taxonomic distribution profile. In this approach, 
specific regions of evolutionarily conserved marker genes are 
first amplified by PCR, and subsequently sequenced (14). In 
the case of bacterial (and/or archaeal) community analysis, the 
target region usually contains the 16S ribosomal RNA (rRNA) 
gene (15). Hence, the approach is referred to as 16S rRNA 
profiling. Full shotgun metagenomics, also referred as 
metagenomic whole genome sequencing (WGS), does not 
target a specific locus or marker gene, but instead breaks the 
isolated metagenomic DNA into smaller fragments, and sub-
sequently sequences the individual pieces (14). The sequenced 
small fragments (i.e., sequencing raw reads) can be used for 
taxonomy profiling (who is there?) as well as for functional 
profiling (what are they doing?) (14). In this section, we briefly 
describe the scheme of the techniques involved and the 
bioinformatic pipelines, to analyze microbiome sequence data 
obtained from the above two methods.

16S rRNA profiling
The 16S rRNA gene was introduced as a marker for bacterial 
phylogeny by Woese et al. (16). Ever since, it has been the gold 
standard for phylogenetic analysis of microbial communities 
and bacterial taxonomy (11). Bacterial 16S rRNA genes usually 
include nine hypervariable regions (V1-V9) that exhibit sub-
stantial sequence diversity among different bacterial species 
(17). Numerous studies have assessed the 16S rRNA gene and 
selected the most appropriate conserved regions to generate 
amplicons using universal primers, as well as identified the 
most effective hypervariable regions to be targeted (17-23). 
Unfortunately, no single hypervariable region is sufficiently 
different to define all bacterial species and a bias can be 
introduced by primer specificity as well as efficiency. 
Basically, the 16S rRNA profiling can be summarized into 
three steps: (1) preprocessing and denoising of raw reads, (2) 
taxonomic assignment, and (3) evaluation of microbial diversity.

(1) Preprocessing and denoising of raw sequencing reads: 

Although there are standard operations and protocols to 
generate the NGS sequencing libraries, stochastic errors in the 
biological processes for the library creation, and/or incomplete 
chemical reactions in sequencing, could affect the overall 
quality of the sequencing library and sequencing datasets. 
Therefore, raw sequencing reads generated should be carefully 
checked for the successful downstream analysis in the pre-
processing step. A number of computational tools have been 
used for the preprocessing: FastQC (http://www.bioinformatics. 
babraham.ac.uk/projects/fastqc/) provides a quick quality check 
by running a modular set of analyses such as “per base 
sequence quality”, “per sequence quality score”, “sequence 
length distribution”, “adapter content”, etc.; FASTX- toolkit 
(http://hannonlab.cshl.edu/fastx_toolkit/) allows detecting and 
trimming the low quality region of the individual read 
(especially 3’-end of the reads); DUST is used to remove 
low-complexity regions in the sequencing read (24). In-
trinsically, NGS techniques can harbor various errors in the 
sequencing reads, such as imprecise signals from longer 
homopolymer runs and chimera sequences. In the denoising 
step, these errors were identified and corrected for the accurate 
taxonomic assignments of the sequencing reads. Many popular 
software, such as QIIME (25) and mothur (26), have implemented 
the denoising algorithms. In particular, UCHIME is designed to 
detect chimeric sequences by comparing reference sequences 
to a database, or by performing de novo classification (clustering) 
(27). Preprocessed and denoised raw sequencing reads are 
subsequently subject to the process of taxonomic assignment. 

(2) Taxonomic assignment: NGS allows investigators to 
detect and identify novel bacteria that have previously gone 
undetected. Subsequently, the assignment of 16S rRNA read 
sequences originated from uncultured bacterial genome into a 
specific bacterial taxonomy is even more difficult. In two 
frequently used methods, the reads are assigned into bins, 
according to either homology between the reads and known 
reference sequences (i.e., phylotyping) or homology between 
the reads (i.e., operational taxonomic units [OTUs]) (28). The 
former method relies upon aligning reads with the reference 
16S rRNA database using sequence alignment algorithms, 
such as BLAST (29). Besides NCBI Genbank, a number of 
rRNA databases have been constructed and used for the 
taxonomic assignment (Table 1). Each database has its own 
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Body Site
V1-V3 V3-V5 

Patients OTUs Estimated richnessa Patients OTUs Estimated richnessa

Buccal mucosa 114 2,025 6,635 198 898 4,650
Hard palate 112 1,741 3,793 190 912 3,125
Keratinized gingiva 117 1,545 4,387 206 857 3,352
Palatine Tonsils 119 3,683 10,023 204 1,633 9,020
Saliva 99 2,341 6,546 181 1,399 6,801
Subgingival plaque 119 4,216 14,410 204 1,672 11,501
Supragingival plaque 121 3,851 11,154 205 1,587 8,254
Throat 110 2,343 5,601 192 1,136 4,154
Tongue dorsum 119 3,651 7,910 205 1,503 7,947
Posterior fornixb 59 428 1,151 95 400 1,466
Stoolb 118 6,050 23,665 209 5,391 33,627

aUpper and lower confidence limits are not included in this table. bExample of extraoral sites. The stool samples have the highest estimate of total 
richness, followed by the oral samples, particularly the plaque and tonsils. The skin sites, such as posterior fornix, have the lowest estimated 
richness.

Table 2. Counts of patients included, OTUs and estimated richness (number of species) found for both the V1–V3 and the V3–V5 regions (11)

criteria for the curation of data from the original resources. For 
example, the Human Oral Microbiome Database (HOMD) 
(30) and CORE (31) have been constructed using 16S rRNA 
sequences exclusively from human oral bacteria. The second 
approach is to group 16S rRNA sequencing reads into bins 
called OTUs with distance-based agglomerative clustering 
methods, such as CD-HIT (32) and UCLUST (33). Defining 
species by 97% identity in 16S rRNA gene sequence is a 
commonly used criterion, but these distinctions are still 
controversial (11, 34). 

NGS platforms generate massively greater number of reads 
compared to the classical Sanger sequencing, while the reads 
are relatively much shorter. Unfortunately, current databases 
and methods are not able to assign all species names or 
provide enough phylogenetic information for the billions of 
sequence reads (11). For example, the most commonly used 
tool for assigning taxonomy, the Ribosomal Database Project 
(RDP) Classifier (35), does not assign taxonomic names below 
the genus level (11, 36). Moreover, as revealed in our previous 
study, the RDP shows insufficient resolution for classifying the 
GN02 and Synergistetes (37). To supplement the limited 
phylogenetic information, 16S rRNA sequences are usually 
grouped using the OTU approach described above. Huse et al. 
(11) explored the HMP oral microbiota from over 200 
individuals, and identified between 857 and 4,216 OTUs 
(Table 2). In terms of community membership, oral microbiota 
was especially diverse, showing the highest estimate of total 
richness after stool microbiota. Notably, richness as measured 
by the V1-V3 primers, was consistently higher than that 
measured by V3-V5 (11). In addition, some taxa (e.g. 
Lactobacilli OTUs) resolved better with V1-V3 while others 
(e.g. Bifidobacteriaceae OTUs) were better resolved with 

V3-V5 (11). These differences may be due to a mismatch of the 
primers for amplification, or an inability to differentiate the 
taxon in that region of the rRNA gene (11). Therefore, as with 
all 16S rRNA sequencing projects, diversity measurements 
should be compared with other results using the same 16S 
rRNA gene region, and the presence of primer bias should not 
be ignored (11). Additionally, sequencing errors will also affect 
the taxonomic assignments of the sequence reads, possibly 
resulting in spurious OTUs and exaggerated diversity estimates, 
thus making direct comparisons between studies problematic 
(12). 

(3) Evaluation of microbial diversity: To understand the 
structure and dynamics of microbial community, the measure-
ment of diversity is essential. Two diversity measurements are 
frequently used to assess and compare microbial communities: 
alpha (or within-sample) diversity and beta (or between- 
sample) diversity. Alpha diversity is usually characterized 
using the total number of organisms within a sample (richness, 
which may be measured as the number of OTUs), the relative 
abundances of the organisms (evenness), or indices that 
combine these two dimensions. In contrast, beta diversity, is 
often characterized using the number of species (or OTUs) 
shared between two communities. In particular, UniFrac, a 
robust method for comparing the differences between microbial 
communities between samples, measures the proportion of 
shared branch lengths on a phylogenetic tree between samples 
(3, 38). Principal Coordinates Analysis (PCoA) can summarize 
and visualize the UniFrac distances between samples in a 
scatterplot where points (representing samples) that are more 
distant from one another are more dissimilar.
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Metagenomic WGS data analysis
Although the 16S rRNA profiling is a powerful, effective and 
straightforward technique to study microbial communities, it 
only provides the taxonomic composition. The metagenomic 
WGS data can provide not only taxonomy, but also the 
biological functional profiles for the microbial communities. 
The principles of taxonomy profiling processes that employ 
WGS data are similar to those described above. This section 
will therefore focus on the functional profiling of the microbial 
community. The analysis pipeline can be divided into four 
stages: (1) preprocessing, (2) reconstruction of raw sequencing 
reads (assembly), (3) gene prediction, and (4) functional 
annotations.

(1) Preprocessing: Preprocessing assesses the overall quality 
of WGS data, and most steps are similar to 16S rRNA profiling. 
Additionally, raw metagenomic NGS reads associated with a 
host (e.g. human) are checked for host DNA contamination, 
and the contaminated sequencing reads are removed. Fast 
short read mapping tools, such as BWA (39) and Bowtie 2 
(40), are used to detect the contaminated sequencing reads by 
aligning raw sequencing reads against the host genome (e.g. 
human genome).

(2) Reconstruction of raw sequencing reads (assembly): The 
metagenomic WGS technique generates raw sequencing reads 
from the whole microbial genomes in the microbial community. 
Thus, to identify the specific genomes and/or complete protein 
coding genes in the genomes accurately, it is helpful to 
reconstruct the microbial genomes from raw sequencing reads. 
However, obtaining complete genomes has been challenging 
not only because of the highly repetitive DNA sequences 
abundant in a broad range of species (from bacteria to 
mammals), but also because of short reads and high data 
volumes produced by NGS technology. Therefore, an 
assembly of shorter reads into genomic contigs and their 
orientation into scaffolds is often performed. Most of the 
metagenomic WGS read assembly tools are designed and 
implemented based on the de Bruijn graph theory algorithm. 
Initially, all sequencing reads are fragmented into k-mers, 
following which they are used as the edges in the de Bruijn 
graph. The nodes of (k-1)-mer prefix and suffix are linked by 
the edges of k-mers for the graph. Finally, the assembler 
identifies the Eulerian paths that go across all edges just once 
in the graph (41). Velvet (42), ABySS (41) and SOAPdenovo 
(44) use the de Bruijn graph to assemble whole metagenomes 
from raw sequencing reads. In the HMP, the raw sequencing 
reads from 749 metagenomic samples were successfully used 
to assemble contigs using an optimized SOAPdenovo protocol 
(8). Recently, more sophisticated algorithms have been 
developed and applied to the next-generation assemblers, such 
as Meta-IDBA (45), MetaVelvet-SL (46) and IDBA-UD (47).

(3) Gene prediction: Following reconstruction, next stage is 
to identify genes in the reads or assembled contigs and/or 
scaffolds. The prediction of genes in metagenomic contents is 
still a fairly difficult problem, although several gene prediction 

algorithms have been successfully employed for prokaryotic 
genomes. To predict genes in metagenomic studies, especially 
for de novo genes, several computational methods have been 
developed, including MetaGeneMark (48), MetaProdigal (49), 
Glimmer-MG (50), and FragGeneScan (51). Notably, the 
performance of gene-predicting tools varies considerably: in a 
comparison of five widely used ab initio gene-calling algorithms 
including FragGeneScan and MetaGeneMark, FragGeneScan is 
rather accurate for predicting reading frames on short raw 
reads (75-1,000 bp) while other tools, such as MetaGeneMark, 
are better suited for higher-quality sequences such as 
assembled contigs (52). Moreover, it has been reported that 
combining predictions from various programs can improve the 
accuracy of prediction and annotation of metagenomic reads 
(53). Accordingly, researchers should carefully decide what 
tools to use in their metagenomic study, which potentially 
impacts the results and conclusion.

(4) Functional annotations: After gene prediction, the 
identified genes are functionally annotated by comparing the 
known genes in the functional annotation databases such as 
PFAM (54), IMG/M (55), COG (56) and MetaRef (57). Further 
analysis of the relationship between the microbiome and the 
host phenotype is performed using metabolic pathway in-
formation database, i.e. KEGG (58), eggNOG (59) and 
MinPath (60). In the part of the HMP, Abubucker et al. devised 
HMP Unified Metabolic Analysis Network (HUMAnN) to 
construct metabolic networks of the microbial communities 
(61). In this study, raw sequencing reads were searched against 
protein sequence databases, and HUMAnN recovers the 
abundances of individual orthologues gene families and 
pathway. More specifically, MBLASTX, KEGG orthology and 
MinPath have been used to assign genes and available 
pathways. Recently, several metagenomic analysis pipeline 
software have been developed, such as MG-RAST (62) and 
IMG/MER (https://img.jgi.doe.gov/cgi-bin/mer/main.cgi). The 
pipelines provide the functional annotation modules in their 
fully automated pipeline web-server and thus, researchers can 
easily perform functional annotation tasks using their own data 
in the web (15).

COMPOSITION AND DIVERSITY OF ORAL 
MICROBIOME

The HMP assessed oral microbiome composition of seven 
intra oral sites (buccal mucosa, hard palate, keratinized 
gingiva, saliva, sub- and supra gingival plaque, and tongue 
dorsum) and two oropharyngeal sites (throat and palatine 
tonsils) from 182-206 healthy subjects (18 to 40 years old). A 
total of 185-322 genera belonging to 13-19 bacterial phyla 
were discovered (13). The dominant phyla were Firmicutes, 
Bacteroidetes, Proteobacteria, Fusobacteria and Actinobacteria, 
accounting for over 95% of the entire oral microbiome. An 
individual sample from a single site of a single subject 
contained 23-50 genera from 6-9 phyla (13). Among all body 
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habitats, the oral habitats have the highest alpha diversity 
showing the highest OTU level richness, after the stool 
samples (Table 2), while the skin and vaginal microbiota show 
lower alpha diversity (11, 13). Comparing samples from the 
same sites among subjects (beta diversity), the oral sites have 
the lowest beta diversities, signifying that members of the 
population shared relatively similar organisms in oral sites 
than in other body sites (10). However, the HMP oral datasets 
also emphasize the high variance across individuals, especially 
at the sub-genus level: even OTUs existing in almost every 
subject, or dominating in some samples, showed variation in 
relative abundance (11). In the following sections, we discuss 
in detail about the specific factors that contribute to the 
variability of the healthy oral microbiome.

Different oral biogeographic niches
The oral cavity is a humid environment which is kept at a 
fairly consistent temperature (34oC to 36oC) and a relatively 
neutral pH in most areas, and thus provide great condition for 
the growth of various microorganisms (63). The oral cavity is 
composed of diverse habitats with different anatomical 
structures and physicochemical factors. The oral mucosa 
covers the cheek, tongue, gingiva, palate, and floor of the 
mouth and allows rapid elimination of adhering bacteria due 
to a continuous shedding of its surface epithelial cells (63). On 
the other hand, papillary surface of the tongue provides shelter 
for adhering bacteria and protects these bacteria from 
mechanical cleaning. The hard surface of teeth offers many 
sites for bacterial colonization, in both supra- and subgingival 
areas. The gingival crevice (area between the junctional 
epithelium of the gingiva and teeth), provides a distinctive 
microbial colonization site, consisting of both hard and soft 
tissues (63). The epithelium may be keratinized (palate) or 
nonkeratinized (gingival crevice). Hence, the oral cavity is not 
considered a uniform environment.

The HMP revealed a substantial divergence in the species 
richness and evenness among different oral habitats, and also 
identified microorganisms with specific niche preferences. 
Hard palate showed the lowest total richness, however the 
gingival plaque showed the highest total richness (11) (Table 
2). Oral sites, especially saliva, have the highest evenness, 
while buccal mucosa and keratinized gingiva have lower 
alpha diversity than the other oral sites (10, 13). Each oral 
habitat in almost every subject was characterized by one or a 
few signature taxa making up the plurality of the community 
with highly variable relative abundance among both the 
individuals and the oral habitats. Most oral habitats are 
dominated by Streptococcus, followed in abundance by 
Haemophilus in the buccal mucosa, Actinomyces in the 
supragingival plaque, and Prevotella in the subgingival plaque 
(10, 13). There is an overlap of species detected in almost all 
oral sites, such as certain species of Streptococcus (OTUs #2, 
5 and 6), Gemella (OTUs #7 and 8), Granulicatella (OTU 
#13), Fusobacterium (OTUs #9 and 27), and Veillonella 

(OTUs #4 and 7) (11). However, several abundant genera had 
multiple OTUs with distinct preferences for often only one or 
two oral sites, such as Bacteroides, Prevotella, Corynebacterium, 
Fusobacterium, Pasteurella, and Neisseria (11). For example, 
Corynebacterium matruchotii (OTU #15) existed almost only 
in the supragingival plaque, while Corynebacterium argen-
toratense (OTU #188) was mostly found in saliva and to a 
lesser extent on the hard palate (11). This may be due to the 
desquamation of the epithelial cells and the shear forces that 
are generated during chewing in the buccal fold and the hard 
palate (64). Analysis of oral samples collected from the elderly 
(range 73-93), Lautropia mirabilis was significantly associated 
with the supragingival plaque, while Treponema socranskii 
was found only in the subgingival plaque (65). This may be 
explained by the low oxidation-reduction potential of the 
subgingival plaque. In the oropharynx, the distribution of 
Firmicutes, Proteobacteria, and Bacteroidetes was similar to 
that in saliva, but had more Proteobacteria than found in the 
mouth (66). 

Influence of geography, climate and ethnicity
Although the HMP produced a huge volume of data, the 
resulting 16S rRNA datasets are composed of samples from 
medical students in the USA, and host information is nearly 
prohibitive to access, which lead to removal of the potential to 
observe any systematic patterns and regional or ethnic 
differences (67). A population-scale study of 120 healthy 
individuals from 12 worldwide locations showed a significant 
variation in the saliva microbiome according to the locations 
(68). Notably, the saliva microbiome of Batwa Pygmies, a 
former hunter-gatherer group from Africa, was much more 
diverse than the saliva microbiome of two agricultural African 
groups, probably owing to their different lifestyle and diet (69). 
In another study of 3 human groups from different geographic 
and climatic areas (76 native Alaskans, 10 Germans and 66 
Africans) the distinctiveness of the saliva microbiome was 
seen, the reasons of which (e.g. different lifestyles and/or host 
genetics and physiology) remain to be clarified (70). In the 
study, alpha diversity was highest for the German group and 
lowest for the African group, while the opposite was true for 
beta diversity. It is intriguing to speculate that the higher 
population density of Germany may provide more opportunities 
for bacteria to be spread among individuals (70).

Ethnicity is likely to exert a selection pressure on the oral 
microbiome. Mason et al. (71) analyzed dental plaque and 
saliva samples collected from 192 subjects belonging to four 
ethnic affiliations (non-Hispanic blacks, non-Hispanic whites, 
Chinese, and Latinos) and found obvious ethnicity-specific 
clustering of microbial communities, thus reinforcing prior 
observations (72-74). It seems that this selection pressure is 
most likely genetic rather than environmental, because the two 
ethnicities that shared a common food, nutritional and lifestyle 
heritage (Caucasians and African Americans) showed 
substantial microbial diversity (71). It is known that not only 
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innate immune responses to infectious agents, but also tooth 
morphologies, vary according to ethnic affiliation (75-78). 
Therefore, ethnicity possibly contribute to the bacterial selection 
by affecting the environment for bacterial colonization (71).

Vertical and horizontal transmission
Vertical transmission from mother to child starts at birth (79). 
Depending on the delivery mode (vaginal or Caesarian), 
infants acquire bacterial communities similar to their mother's 
vaginal microbiota or skin microbiota (80). A study of healthy 
three-month-old infants delivered vaginally (25 infants) and 
born by C-section (38 infants) found differences in the infant’s 
oral microbiota owing to the mode of delivery, with vaginally 
delivered infants having a higher taxonomic diversity (81). The 
method of feeding also affects the infant’s microbiome: oral 
lactobacilli with antimicrobial properties were found in 
breast-fed infants but not found in formula-fed infants (82, 83). 
Horizontal transmission of oral microbiota among siblings and 
other individuals sharing the same environment also 
contributes to oral microbiome diversity. In a study, 264 saliva 
samples were collected from 107 individuals (including 45 
twin pairs), at up to three time-points during a 10-year period, 
spanning adolescence. The twins resembled each other more 
closely than the whole population at all time-points, but 
became less similar to each other when they aged and no 
longer cohabited (84).

Temporal variation
Studies looking at the temporal variation of the oral microbiome 
have revealed conflicting results: in a longitudinal study of 5 
adults at three time-points (from 5 to 29 days), the salivary 
microbial community appeared to be stable at different time 
points (85). The HMP consortium (10) and Zhou et al. (13) 
reported that, among 22 HMP habitats of the human body, the 
oral habitat has the most stable microbiota, showing the 
highest community similarity between two visits (mean time 
interval between visits is 212 days), while the skin and vaginal 
microbiota are less stable. In contrast, a reanalysis of the HMP 
datasets by a method for quantifying the difference between 
two cohorts revealed that the relative abundances of core 
OTUs in an individual sample showed significantly greater 
changes from 1st to 2nd visit at oral and stool body regions, as 
compared with the vaginal region (12). More recently, a 
weekly longitudinal study of 85 adults over 3 months, showed 
high levels of temporal variability in both diversity and 
community structure in tongue microbiome, as in other body 
habitats studied (86). Furthermore, this study found that the 
composition of an individual’s microbiome as well as their 
degree of temporal variability, are personalized features. 
Collectively, although intrapersonal variation over time is 
lower than interpersonal variation, intrapersonal temporal 
dynamics need to be considered when attempting to link 
changes in microbiome structure to changes in health status 
(86).

Age-related changes
Along with a variety of physiological changes which accom-
panies aging, microbial habitats also greatly change in the oral 
cavity. The eruption of primary teeth and replacement of the 
primary dentition with permanent dentition may lead to shifts 
in the microbial community composition at different phases of 
life (87). Edentulous infants have been found to have lower 
diversity than their mothers or primary care givers in the oral 
microbial composition (88). In deciduous dentition, a higher 
proportion of Proteobacteria (Gammaproteobacteria, Moraxel-
laceae) was found than Bacteroidetes. With increasing age, 
Bacteroidetes (mainly genus Prevotella), Veillonellaceae 
family, Spirochaetes, and candidate division TM7 increased 
(89). Several organisms, including members of the genera 
Veillonella, Actinomyces and Streptococcus, were reported to 
have age-specific abundance profiles during adolescence (84). 
Xu et al. (87) analyzed the oral microbiome (saliva, supragingiva 
and mucosa) across a wide age range (3 days-76 years), in 
which only a very small overlap of shared OTU was observed. 
In this study, a distinct temporal shift was observed in the 
relative abundance of most genera. The average relative 
abundance of the dominant bacterial phyla, Actinobacteria, 
Bacteroides, Firmicutes, Fusobacteria, Proteobacteria, Spirochetes 
and candidate division TM7 varied by age/dentition stage (87). 

CONCLUSIONS

We have only begun to understand the tremendous diversity 
of the oral microbiome and a number of challenges remain, 
such as the vast uncultivated species and the lack of reference 
genomes (90). Until recently, about half of all known bacterial 
phyla were identified only from their 16S rRNA gene 
sequences (91). In fact, the bacteria that can be grown in the 
laboratory are only a portion of the total diversity that exists in 
the oral cavity (92). One method to address this challenge is 
single-cell genomics, which is a powerful tool for accessing 
genetic information from uncultivated microorganisms (93). 
Future work combining metagenomics and single cell 
genomics, as well as advances in each separate method, 
should help to overcome these issues, providing new insights 
into the uncultivated lineages (94).

Rapidly developing sequencing methods and analytical 
techniques are enhancing our ability to understand the human 
microbiome, leading to the concept of a ‘personal microbiome’. 
The focus now shifts from characterizing oral microbiota to 
functional studies encompassing genomics, transcriptomics, 
and metabolomics of both host and microbes. Future 
investigations will inevitably be personal omics profiling in 
order to probe the temporal patterns associated with both 
molecular changes and related physiological health and 
disease. This knowledge is vital for the development of 
efficacious prevention and treatment protocols for oral 
diseases and, ultimately, contribute to the development of 
personalized medicine and personalized dental medicine.
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