DOI QR코드

DOI QR Code

Emerging Co-signaling Networks in T Cell Immune Regulation

  • Jung, Keunok (Department of Microbiology and Immunology, Advanced Cancer Research of Multiple Myeloma, Inje University College of Medicine) ;
  • Choi, Inhak (Department of Microbiology and Immunology, Advanced Cancer Research of Multiple Myeloma, Inje University College of Medicine)
  • Received : 2013.09.11
  • Accepted : 2013.09.27
  • Published : 2013.10.31

Abstract

Co-signaling molecules are surface glycoproteins that positively or negatively regulate the T cell response to antigen. Co-signaling ligands and receptors crosstalk between the surfaces of antigen-presenting cells (APCs) and T cells, and modulate the ultimate magnitude and quality of T cell receptor (TCR) signaling. In the past 10 years, the field of co-signaling research has been advanced by the understanding of underlying mechanisms of the immune modulation led by newly identified co-signaling molecules and the successful preclinical and clinical trials targeting co-inhibitory molecules called immune checkpoints in the treatment of autoimmune diseases and cancers. In this review, we briefly describe the characteristics of well-known B7 co-signaling family members regarding the expression, functions and therapeutic implications and to introduce newly identified B7 members such as B7-H5, B7-H6, and B7-H7.

Keywords

References

  1. Van Parijs, L. and A. K. Abbas. 1998. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280: 243-248. https://doi.org/10.1126/science.280.5361.243
  2. Chen, L. and D. B. Flies. 2013. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13: 227-242. https://doi.org/10.1038/nri3405
  3. Pardoll, D. M. 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12: 252-264. https://doi.org/10.1038/nrc3239
  4. Saito, T., T. Yokosuka, and A. Hashimoto-Tane. 2010. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett. 584: 4865-4871. https://doi.org/10.1016/j.febslet.2010.11.036
  5. Greenwald, R. J., G. J. Freeman, and A. H. Sharpe. 2005. The B7 family revisited. Annu. Rev. Immunol. 23: 515-548. https://doi.org/10.1146/annurev.immunol.23.021704.115611
  6. Isakov, N. and A. Altman. 2012. PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors. Front. Immunol. 3: 273.
  7. Rudd, C. E. and H. Schneider. 2003. Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat. Rev. Immunol. 3: 544-556. https://doi.org/10.1038/nri1131
  8. Viola, A. and A. Lanzavecchia. 1996. T cell activation determined by T cell receptor number and tunable thresholds. Science 273: 104-106. https://doi.org/10.1126/science.273.5271.104
  9. Boise, L. H., A. J. Minn, P. J. Noel, C. H. June, M. A. Accavitti, T. Lindsten, and C. B. Thompson. 1995. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3: 87-98. https://doi.org/10.1016/1074-7613(95)90161-2
  10. Rulifson, I. C., A. I. Sperling, P. E. Fields, F. W. Fitch, and J. A. Bluestone. 1997. CD28 costimulation promotes the production of Th2 cytokines. J. Immunol. 158: 658-665.
  11. Zhang, R., A. Huynh, G. Whitcher, J. Chang, J. S. Maltzman, and L. A. Turka. 2013. An obligate cell-intrinsic function for CD28 in Tregs. J. Clin. Invest. 123: 580-593.
  12. Walunas, T. L., D. J. Lenschow, C. Y. Bakker, P. S. Linsley, G. J. Freeman, J. M. Green, C. B. Thompson, and J. A. Bluestone. 1994. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1: 405-413. https://doi.org/10.1016/1074-7613(94)90071-X
  13. Salama, A. K. and F. S. Hodi. 2011. Cytotoxic T-lymphocyte- associated antigen-4. Clin. Cancer Res. 17: 4622-4628. https://doi.org/10.1158/1078-0432.CCR-10-2232
  14. Qureshi, O. S., Y. Zheng, K. Nakamura, K. Attridge, C. Manzotti, E. M. Schmidt, J. Baker, L. E. Jeffery, S. Kaur, Z. Briggs, T. Z. Hou, C. E. Futter, G. Anderson, L. S. Walker, and D. M. Sansom. 2011. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332: 600-603. https://doi.org/10.1126/science.1202947
  15. Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057-1061. https://doi.org/10.1126/science.1079490
  16. Fontenot, J. D., M. A. Gavin, and A. Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4: 330-336. https://doi.org/10.1038/ni904
  17. Paust, S., L. Lu, N. McCarty, and H. Cantor. 2004. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc. Natl. Acad. Sci. USA 101: 10398- 10403. https://doi.org/10.1073/pnas.0403342101
  18. Grohmann, U., C. Orabona, F. Fallarino, C. Vacca, F. Calcinaro, A. Falorni, P. Candeloro, M. L. Belladonna, R. Bianchi, M. C. Fioretti, and P. Puccetti. 2002. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3: 1097-1101. https://doi.org/10.1038/ni846
  19. Fallarino, F., U. Grohmann, K. W. Hwang, C. Orabona, C. Vacca, R. Bianchi, M. L. Belladonna, M. C. Fioretti, M. L. Alegre, and P. Puccetti. 2003. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4: 1206-1212. https://doi.org/10.1038/ni1003
  20. Munn, D. H., M. D. Sharma, and A. L. Mellor. 2004. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172: 4100-4110. https://doi.org/10.4049/jimmunol.172.7.4100
  21. Keir, M. E., M. J. Butte, G. J. Freeman, and A. H. Sharpe. 2008. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26: 677-704. https://doi.org/10.1146/annurev.immunol.26.021607.090331
  22. Butte, M. J., M. E. Keir, T. B. Phamduy, A. H. Sharpe, and G. J. Freeman. 2007. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27: 111-122. https://doi.org/10.1016/j.immuni.2007.05.016
  23. Shlapatska, L. M., S. V. Mikhalap, A. G. Berdova, O. M. Zelensky, T. J. Yun, K. E. Nichols, E. A. Clark, and S. P. Sidorenko. 2001. CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A. J. Immunol. 166: 5480-5487. https://doi.org/10.4049/jimmunol.166.9.5480
  24. Agata, Y., A. Kawasaki, H. Nishimura, Y. Ishida, T. Tsubata, H. Yagita, and T. Honjo. 1996. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8: 765-772. https://doi.org/10.1093/intimm/8.5.765
  25. Dong, H., S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen. 2002. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8: 793-800. https://doi.org/10.1038/nm730
  26. Blank, C., I. Brown, A. C. Peterson, M. Spiotto, Y. Iwai, T. Honjo, and T. F. Gajewski. 2004. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 64: 1140-1145. https://doi.org/10.1158/0008-5472.CAN-03-3259
  27. Taube, J. M., R. A. Anders, G. D. Young, H. Xu, R. Sharma, T. L. McMiller, S. Chen, A. P. Klein, D. M. Pardoll, S. L. Topalian, and L. Chen. 2012. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4: 127ra137.
  28. Thompson, R. H., S. M. Kuntz, B. C. Leibovich, H. Dong, C. M. Lohse, W. S. Webster, S. Sengupta, I. Frank, A. S. Parker, H. Zincke, M. L. Blute, T. J. Sebo, J. C. Cheville, and E. D. Kwon. 2006. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow- up. Cancer Res. 66: 3381-3385. https://doi.org/10.1158/0008-5472.CAN-05-4303
  29. Boland, J. M., E. D. Kwon, S. M. HH. Tang, P. Yang, and M. C. Aubry. 2013. Tumor B7-H1 and B7-H3 expression in squamous cell carcinoma of the lung. Clin. Lung Cancer 14: 157-163. https://doi.org/10.1016/j.cllc.2012.05.006
  30. Mu, C. Y., J. A. Huang, Y. Chen, C. Chen, and X. G. Zhang. 2011. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med. Oncol. 28: 682-688. https://doi.org/10.1007/s12032-010-9515-2
  31. Wang, L., Q. Ma, X. Chen, K. Guo, J. Li, and M. Zhang. 2010. Clinical significance of B7-H1 and B7-1 expressions in pancreatic carcinoma. World J. Surg. 34: 1059-1065. https://doi.org/10.1007/s00268-010-0448-x
  32. Nakanishi, J., Y. Wada, K. Matsumoto, M. Azuma, K. Kikuchi, and S. Ueda. 2007. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol. Immunother. 56: 1173-1182. https://doi.org/10.1007/s00262-006-0266-z
  33. Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682-687. https://doi.org/10.1038/nature04444
  34. Day, C. L., D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S. Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. DePierres, Z. Mncube, J. Duraiswamy, B. Zhu, Q. Eichbaum, M. Altfeld, E. J. Wherry, H. M. Coovadia, P. J. Goulder, P. Klenerman, R. Ahmed, G. J. Freeman, and B. D. Walker. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350-354. https://doi.org/10.1038/nature05115
  35. West, E. E., H. T. Jin, A. U. Rasheed, P. Penaloza-Macmaster, S. J. Ha, W. G. Tan, B. Youngblood, G. J. Freeman, K. A. Smith, and R. Ahmed. 2013. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest. 123: 2604-2615. https://doi.org/10.1172/JCI67008
  36. Shin, T., K. Yoshimura, T. Shin, E. B. Crafton, H. Tsuchiya, F. Housseau, H. Koseki, R. D. Schulick, L. Chen, and D. M. Pardoll. 2005. In vivo costimulatory role of B7-DC in tuning T helper cell 1 and cytotoxic T lymphocyte responses. J. Exp. Med. 201: 1531-1541. https://doi.org/10.1084/jem.20050072
  37. Dong, H., G. Zhu, K. Tamada, and L. Chen. 1999. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5: 1365- 1369. https://doi.org/10.1038/70932
  38. Francisco, L. M., V. H. Salinas, K. E. Brown, V. K. Vanguri, G. J. Freeman, V. K. Kuchroo, and A. H. Sharpe. 2009. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206: 3015-3029. https://doi.org/10.1084/jem.20090847
  39. Gajewski, T. F., J. Louahed, and V. G. Brichard. 2010. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16: 399-403. https://doi.org/10.1097/PPO.0b013e3181eacbd8
  40. Brahmer, J. R., C. G. Drake, I. Wollner, J. D. Powderly, J. Picus, W. H. Sharfman, E. Stankevich, A. Pons, T. M. Salay, T. L. McMiller, M. M. Gilson, C. Wang, M. Selby, J. M. Taube, R. Anders, L. Chen, A. J. Korman, D. M. Pardoll, I. Lowy, and S. L. Topalian. 2010. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28: 3167-3175. https://doi.org/10.1200/JCO.2009.26.7609
  41. van Elsas, A., A. A. Hurwitz, and J. P. Allison. 1999. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/ macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190: 355-366. https://doi.org/10.1084/jem.190.3.355
  42. Li, B., M. VanRoey, C. Wang, T. H. Chen, A. Korman, and K. Jooss. 2009. Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor--secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin. Cancer Res. 15: 1623- 1634. https://doi.org/10.1158/1078-0432.CCR-08-1825
  43. Swallow, M. M., J. J. Wallin, and W. C. Sha. 1999. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity 11: 423-432. https://doi.org/10.1016/S1074-7613(00)80117-X
  44. Ling, V., P. W. Wu, H. F. Finnerty, K. M. Bean, V. Spaulding, L. A. Fouser, J. P. Leonard, S. E. Hunter, R. Zollner, J. L. Thomas, J. S. Miyashiro, K. A. Jacobs, and M. Collins. 2000. Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor. J. Immunol. 164: 1653-1657. https://doi.org/10.4049/jimmunol.164.4.1653
  45. Yoshinaga, S. K., J. S. Whoriskey, S. D. Khare, U. Sarmiento, J. Guo, T. Horan, G. Shih, M. Zhang, M. A. Coccia, T. Kohno, A. Tafuri-Bladt, D. Brankow, P. Campbell, D. Chang, L. Chiu, T. Dai, G. Duncan, G. S. Elliott, A. Hui, S. M. McCabe, S. Scully, A. Shahinian, C. L. Shaklee, G. Van, T. W. Mak, and G. Senaldi. 1999. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402: 827-832. https://doi.org/10.1038/45582
  46. Aicher, A., M. Hayden-Ledbetter, W. A. Brady, A. Pezzutto, G. Richter, D. Magaletti, S. Buckwalter, J. A. Ledbetter, and E. A. Clark. 2000. Characterization of human inducible costimulator ligand expression and function. J. Immunol. 164: 4689-4696. https://doi.org/10.4049/jimmunol.164.9.4689
  47. Nakazawa, A., I. Dotan, J. Brimnes, M. Allez, L. Shao, F. Tsushima, M. Azuma, and L. Mayer. 2004. The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology 126: 1347-1357. https://doi.org/10.1053/j.gastro.2004.02.004
  48. Wiendl, H., M. Mitsdoerffer, D. Schneider, A. Melms, H. Lochmuller, R. Hohlfeld, and M. Weller. 2003. Muscle fibres and cultured muscle cells express the B7.1/2-related inducible co-stimulatory molecule, ICOSL: implications for the pathogenesis of inflammatory myopathies. Brain 126: 1026-1035. https://doi.org/10.1093/brain/awg114
  49. Brodie, D., A. V. Collins, A. Iaboni, J. A. Fennelly, L. M. Sparks, X. N. Xu, P. A. van der Merwe, and S. J. Davis. 2000. LICOS, a primordial costimulatory ligand? Curr. Biol. 10: 333-336. https://doi.org/10.1016/S0960-9822(00)00383-3
  50. Wang, S., G. Zhu, A. I. Chapoval, H. Dong, K. Tamada, J. Ni, and L. Chen. 2000. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood 96: 2808-2813.
  51. Beier, K. C., A. Hutloff, A. M. Dittrich, C. Heuck, A. Rauch, K. Buchner, B. Ludewig, H. D. Ochs, H. W. Mages, and R. A. Kroczek. 2000. Induction, binding specificity and function of human ICOS. Eur. J. Immunol. 30: 3707-3717. https://doi.org/10.1002/1521-4141(200012)30:12<3707::AID-IMMU3707>3.0.CO;2-Q
  52. Mages, H. W., A. Hutloff, C. Heuck, K. Buchner, H. Himmelbauer, F. Oliveri, and R. A. Kroczek. 2000. Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur. J. Immunol. 30: 1040-1047. https://doi.org/10.1002/(SICI)1521-4141(200004)30:4<1040::AID-IMMU1040>3.0.CO;2-6
  53. Yoshinaga, S. K., M. Zhang, J. Pistillo, T. Horan, S. D. Khare, K. Miner, M. Sonnenberg, T. Boone, D. Brankow, T. Dai, J. Delaney, H. Han, A. Hui, T. Kohno, R. Manoukian, J. S. Whoriskey, and M. A. Coccia. 2000. Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int. Immunol. 12: 1439-1447. https://doi.org/10.1093/intimm/12.10.1439
  54. Coyle, A. J., S. Lehar, C. Lloyd, J. Tian, T. Delaney, S. Manning, T. Nguyen, T. Burwell, H. Schneider, J. A. Gonzalo, M. Gosselin, L. R. Owen, C. E. Rudd, and J. C. Gutierrez-Ramos. 2000. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13: 95-105. https://doi.org/10.1016/S1074-7613(00)00011-X
  55. Sharpe, A. H. and G. J. Freeman. 2002. The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126. https://doi.org/10.1038/nri727
  56. Kopf, M., A. J. Coyle, N. Schmitz, M. Barner, A. Oxenius, A. Gallimore, J. C. Gutierrez-Ramos, and M. F. Bachmann. 2000. Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J. Exp. Med. 192: 53-61. https://doi.org/10.1084/jem.192.1.53
  57. Sperling, A. I. 2001. ICOS costimulation: is it the key to selective immunotherapy? Clin. Immunol. 100: 261-262. https://doi.org/10.1006/clim.2001.5084
  58. Akbari, O., G. J. Freeman, E. H. Meyer, E. A. Greenfield, T. T. Chang, A. H. Sharpe, G. Berry, R. H. DeKruyff, and D. T. Umetsu. 2002. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8: 1024-1032. https://doi.org/10.1038/nm745
  59. Riella, L. V., S. Dada, L. Chabtini, B. Smith, L. Huang, P. Dakle, B. Mfarrej, F. D'Addio, L. T. Adams, N. Kochupurakkal, A. Vergani, P. Fiorina, A. L. Mellor, A. H. Sharpe, H. Yagita, and I. Guleria. 2013. B7h (ICOS-L) maintains tolerance at the fetomaternal interface. Am. J. Pathol. 182: 2204-2213. https://doi.org/10.1016/j.ajpath.2013.02.014
  60. Hu, Y. L., D. P. Metz, J. Chung, G. Siu, and M. Zhang. 2009. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J. Immunol. 182: 1421-1428. https://doi.org/10.4049/jimmunol.182.3.1421
  61. Yao, S., Y. Zhu, G. Zhu, M. Augustine, L. Zheng, D. J. Goode, M. Broadwater, W. Ruff, S. Flies, H. Xu, D. Flies, L. Luo, S. Wang, and L. Chen. 2011. B7-h2 is a costimulatory ligand for CD28 in human. Immunity 34: 729-740. https://doi.org/10.1016/j.immuni.2011.03.014
  62. Chapoval, A. I., J. Ni, J. S. Lau, R. A. Wilcox, D. B. Flies, D. Liu, H. Dong, G. L. Sica, G. Zhu, K. Tamada, and L. Chen. 2001. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol. 2: 269-274. https://doi.org/10.1038/85339
  63. Sun, M., S. Richards, D. V. Prasad, X. M. Mai, A. Rudensky, and C. Dong. 2002. Characterization of mouse and human B7-H3 genes. J. Immunol. 168: 6294-6297. https://doi.org/10.4049/jimmunol.168.12.6294
  64. Steinberger, P., O. Majdic, S. V. Derdak, K. Pfistershammer, S. Kirchberger, C. Klauser, G. Zlabinger, W. F. Pickl, J. Stockl, and W. Knapp. 2004. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J. Immunol. 172: 2352-2359. https://doi.org/10.4049/jimmunol.172.4.2352
  65. Xu, H., I. Y. Cheung, H. F. Guo, and N. K. Cheung. 2009. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 69: 6275-6281. https://doi.org/10.1158/0008-5472.CAN-08-4517
  66. Chen, C., Y. Shen, Q. X. Qu, X. Q. Chen, X. G. Zhang, and J. A. Huang. 2013. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp. Cell Res. 319: 96-102. https://doi.org/10.1016/j.yexcr.2012.09.006
  67. Zhao, X., D. C. Li, X. G. Zhu, W. J. Gan, Z. Li, F. Xiong, Z. X. Zhang, G. B. Zhang, X. G. Zhang, and H. Zhao. 2013. B7-H3 overexpression in pancreatic cancer promotes tumor progression. Int. J. Mol. Med. 31: 283-291. https://doi.org/10.3892/ijmm.2012.1212
  68. Zhang, G., J. Hou, J. Shi, G. Yu, B. Lu, and X. Zhang. 2008. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology 123: 538-546. https://doi.org/10.1111/j.1365-2567.2007.02723.x
  69. Chen, X., G. Zhang, Y. Li, X. Feng, F. Wan, L. Zhang, J. Wang, and X. Zhang. 2009. Circulating B7-H3(CD276) elevations in cerebrospinal fluid and plasma of children with bacterial meningitis. J. Mol. Neurosci. 37: 86-94. https://doi.org/10.1007/s12031-008-9133-z
  70. Zhang, G., J. Wang, J. Kelly, G. Gu, J. Hou, Y. Zhou, H. P. Redmond, J. H. Wang, and X. Zhang. 2010. B7-H3 augments the inflammatory response and is associated with human sepsis. J. Immunol. 185: 3677-3684. https://doi.org/10.4049/jimmunol.0904020
  71. Hashiguchi, M., H. Kobori, P. Ritprajak, Y. Kamimura, H. Kozono, and M. Azuma. 2008. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc. Natl. Acad. Sci. USA 105: 10495-10500. https://doi.org/10.1073/pnas.0802423105
  72. Brunner, A., S. Hinterholzer, P. Riss, G. Heinze, and H. Brustmann. 2012. Immunoexpression of B7-H3 in endometrial cancer: relation to tumor T-cell infiltration and prognosis. Gynecol. Oncol. 124: 105-111. https://doi.org/10.1016/j.ygyno.2011.09.012
  73. Sun, J., L. J. Chen, G. B. Zhang, J. T. Jiang, M. Zhu, Y. Tan, H. T. Wang, B. F. Lu, and X. G. Zhang. 2010. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol. Immunother. 59: 1163-1171. https://doi.org/10.1007/s00262-010-0841-1
  74. Katayama, A., M. Takahara, K. Kishibe, T. Nagato, I. Kunibe, A. Katada, T. Hayashi, and Y. Harabuchi. 2011. Expression of B7-H3 in hypopharyngeal squamous cell carcinoma as a predictive indicator for tumor metastasis and prognosis. Int. J. Oncol. 38: 1219-1226.
  75. Sica, G. L., I. H. Choi, G. Zhu, K. Tamada, S. D. Wang, H. Tamura, A. I. Chapoval, D. B. Flies, J. Bajorath, and L. Chen. 2003. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18: 849-861. https://doi.org/10.1016/S1074-7613(03)00152-3
  76. Prasad, D. V., S. Richards, X. M. Mai, and C. Dong. 2003. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity 18: 863-873. https://doi.org/10.1016/S1074-7613(03)00147-X
  77. Mugler, K. C., M. Singh, B. Tringler, K. C. Torkko, W. Liu, J. Papkoff, and K. R. Shroyer. 2007. B7-h4 expression in a range of breast pathology: correlation with tumor T-cell infiltration. Appl. Immunohistochem. Mol. Morphol. 15: 363-370. https://doi.org/10.1097/01.pai.0000213159.79557.71
  78. Li, Z. Y., X. H. Zhang, Y. Chen, J. G. Guo, K. Sai, Q. Y. Yang, Z. P. Chen, and Y. G. Mou. 2013. Clinical significance of B7-H4 expression in matched non-small cell lung cancer brain metastases and primary tumors. Onco. Targets Ther. 6: 869-875.
  79. Zhu, J., B. F. Chu, Y. P. Yang, S. L. Zhang, M. Zhuang, W. J. Lu, and Y. B. Liu. 2013. B7-H4 expression is associated with cancer progression and predicts patient survival in human thyroid cancer. Asian Pac. J. Cancer Prev. 14: 3011-3015. https://doi.org/10.7314/APJCP.2013.14.5.3011
  80. Fauci, J. M., J. M. Straughn, Jr., S. Ferrone, and D. J. Buchsbaum. 2012. A review of B7-H3 and B7-H4 immune molecules and their role in ovarian cancer. Gynecol Oncol. 127: 420-425. https://doi.org/10.1016/j.ygyno.2012.08.017
  81. Chen, L. J., J. Sun, H. Y. Wu, S. M. Zhou, Y. Tan, M. Tan, B. E. Shan, B. F. Lu, and X. G. Zhang. 2011. B7-H4 expression associates with cancer progression and predicts patient's survival in human esophageal squamous cell carcinoma. Cancer Immunol. Immunother. 60: 1047-1055. https://doi.org/10.1007/s00262-011-1017-3
  82. Kryczek, I., L. Zou, P. Rodriguez, G. Zhu, S. Wei, P. Mottram, M. Brumlik, P. Cheng, T. Curiel, L. Myers, A. Lackner, X. Alvarez, A. Ochoa, L. Chen, and W. Zou. 2006. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203: 871-881. https://doi.org/10.1084/jem.20050930
  83. Zhu, G., M. M. Augustine, T. Azuma, L. Luo, S. Yao, S. Anand, A. C. Rietz, J. Huang, H. Xu, A. S. Flies, S. J. Flies, K. Tamada, M. Colonna, J. M. van Deursen, and L. Chen. 2009. B7-H4-deficient mice display augmented neutrophilmediated innate immunity. Blood 113: 1759-1767. https://doi.org/10.1182/blood-2008-01-133223
  84. Qian, Y., B. Hong, L. Shen, Z. Wu, H. Yao, and L. Zhang. 2013. B7-H4 enhances oncogenicity and inhibits apoptosis in pancreatic cancer cells. Cell Tissue Res. 353: 139-151. https://doi.org/10.1007/s00441-013-1640-8
  85. Cheng, L., J. Jiang, R. Gao, S. Wei, F. Nan, S. Li, and B. Kong. 2009. B7-H4 expression promotes tumorigenesis in ovarian cancer. Int. J. Gynecol. Cancer 19: 1481-1486. https://doi.org/10.1111/IGC.0b013e3181ad0fa2
  86. Zhang, L., H. Wu, D. Lu, G. Li, C. Sun, H. Song, J. Li, T. Zhai, L. Huang, C. Hou, W. Wang, B. Zhou, S. Chen, B. Lu, and X. Zhang. 2013. The costimulatory molecule B7-H4 promote tumor progression and cell proliferation through translocating into nucleus. Oncogene. In press: http://www. nature.com/onc/journal/vaop/ncurrent/full/onc2012600.
  87. Wang, L., R. Rubinstein, J. L. Lines, A. Wasiuk, C. Ahonen, Y. Guo, L. F. Lu, D. Gondek, Y. Wang, R. A. Fava, A. Fiser, S. Almo, and R. J. Noelle. 2011. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208: 577-592. https://doi.org/10.1084/jem.20100619
  88. Ceeraz, S., E. C. Nowak, and R. J. Noelle. 2013. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. In press: http://dx.doi.org/10.1016/j.it. 2013.07.003.
  89. Sakr, M. A., T. Takino, T. Domoto, H. Nakano, R. W. Wong, M. Sasaki, Y. Nakanuma, and H. Sato. 2010. GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase. Cancer Sci. 101: 2368-2374. https://doi.org/10.1111/j.1349-7006.2010.01675.x
  90. Aloia, L., S. Parisi, L. Fusco, L. Pastore, and T. Russo. 2010. Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells. J. Biol. Chem. 285: 7776-7783. https://doi.org/10.1074/jbc.M109.077156
  91. Brandt, C. S., M. Baratin, E. C. Yi, J. Kennedy, Z. Gao, B. Fox, B. Haldeman, C. D. Ostrander, T. Kaifu, C. Chabannon, A. Moretta, R. West, W. Xu, E. Vivier, and S. D. Levin. 2009. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206: 1495-1503. https://doi.org/10.1084/jem.20090681
  92. Fiegler, N., S. Textor, A. Arnold, A. Rolle, I. Oehme, K. Breuhahn, G. Moldenhauer, M. Witzens-Harig, and A. Cerwenka. 2013. Downregulation of the activating NKp30 ligand B7-H6 by HDAC inhibitors impairs tumor cell recognition by NK cells. Blood 122: 684-693. https://doi.org/10.1182/blood-2013-02-482513
  93. Pogge von Strandmann, E., V. R. Simhadri, B. von Tresckow, S. Sasse, K. S. Reiners, H. P. Hansen, A. Rothe, B. Boll, V. L. Simhadri, P. Borchmann, P. J. McKinnon, M. Hallek, and A. Engert. 2007. Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27: 965-974. https://doi.org/10.1016/j.immuni.2007.10.010
  94. Sasaki, T., E. C. Gan, A. Wakeham, S. Kornbluth, T. W. Mak, and H. Okada. 2007. HLA-B-associated transcript 3 (Bat3)/ Scythe is essential for p300-mediated acetylation of p53. Genes. Dev. 21: 848-861. https://doi.org/10.1101/gad.1534107
  95. Correia, D. V., M. Fogli, K. Hudspeth, M. G. da Silva, D. Mavilio, and B. Silva-Santos. 2011. Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118: 992-1001. https://doi.org/10.1182/blood-2011-02-339135
  96. Delahaye, N. F., S. Rusakiewicz, I. Martins, C. Menard, S. Roux, L. Lyonnet, P. Paul, M. Sarabi, N. Chaput, M. Semeraro, V. Minard-Colin, V. Poirier-Colame, K. Chaba, C. Flament, V. Baud, H. Authier, S. Kerdine-Romer, M. Pallardy, I. Cremer, L. Peaudecerf, B. Rocha, D. Valteau-Couanet, J. C. Gutierrez, J. A. Nunes, F. Commo, S. Bonvalot, N. Ibrahim, P. Terrier, P. Opolon, C. Bottino, A. Moretta, J. Tavernier, P. Rihet, J. M. Coindre, J. Y. Blay, N. Isambert, J. F. Emile, E. Vivier, A. Lecesne, G. Kroemer, and L. Zitvogel. 2011. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med. 17: 700-707. https://doi.org/10.1038/nm.2366
  97. Mager, D. L., D. G. Hunter, M. Schertzer, and J. D. Freeman. 1999. Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics 59: 255-263. https://doi.org/10.1006/geno.1999.5877
  98. Flajnik, M. F., T. Tlapakova, M. F. Criscitiello, V. Krylov, and Y. Ohta. 2012. Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC. Immunogenetics 64: 571-590. https://doi.org/10.1007/s00251-012-0616-2
  99. Zhu, Y., S. Yao, B. P. Iliopoulou, X. Han, M. M. Augustine, H. Xu, R. T. Phennicie, S. J. Flies, M. Broadwater, W. Ruff, J. M. Taube, L. Zheng, L. Luo, G. Zhu, J. Chen, and L. Chen. 2013. B7-H5 costimulates human T cells via CD28H. Nat. Commun. 4: 2043.

Cited by

  1. T Lymphocyte Antigen 4-Modified Dendritic Cell Therapy for Asthmatic Mice Guided by the CCR7 Chemokine Receptor vol.15, pp.9, 2013, https://doi.org/10.3390/ijms150915304
  2. Comprehensive molecular profiling of the B7 family of immune-regulatory ligands in breast cancer vol.5, pp.8, 2013, https://doi.org/10.1080/2162402x.2016.1207841
  3. The immune molecular landscape of the B7 and TNFR immunoregulatory ligand–receptor families in head and neck cancer: A comprehensive overview and the immunotherapeutic implications vol.6, pp.3, 2017, https://doi.org/10.1080/2162402x.2017.1288329
  4. Novel combination strategies for enhancing efficacy of immune checkpoint inhibitors in the treatment of metastatic solid malignancies vol.18, pp.14, 2013, https://doi.org/10.1080/14656566.2017.1369956
  5. PD-1 related transcriptome profile and clinical outcome in diffuse gliomas vol.7, pp.2, 2013, https://doi.org/10.1080/2162402x.2017.1382792
  6. The comprehensive molecular landscape of the immunologic co-stimulator B7 and TNFR ligand receptor families in colorectal cancer: immunotherapeutic implications with microsatellite instability vol.7, pp.10, 2013, https://doi.org/10.1080/2162402x.2018.1488566
  7. Disruption of the Epidermal Barrier Induces Regulatory T Cells via IL-33 in Mice vol.138, pp.3, 2013, https://doi.org/10.1016/j.jid.2017.09.032
  8. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy vol.11, pp.1, 2013, https://doi.org/10.1186/s13045-018-0578-4
  9. The essential role of costimulatory molecules in systemic lupus erythematosus vol.28, pp.5, 2013, https://doi.org/10.1177/0961203319829818
  10. PD-L1 status in breast cancer vol.81, pp.2, 2013, https://doi.org/10.17116/patol2019810213
  11. Inhibition of immune checkpoints prevents injury-induced heterotopic ossification vol.7, pp.1, 2013, https://doi.org/10.1038/s41413-019-0074-7
  12. Comprehensive landscape of immune-checkpoints uncovered in clear cell renal cell carcinoma reveals new and emerging therapeutic targets vol.69, pp.7, 2013, https://doi.org/10.1007/s00262-020-02530-x
  13. B7-H3 Immune Checkpoint Protein in Human Cancer vol.27, pp.24, 2013, https://doi.org/10.2174/0929867326666190517115515
  14. Immune Checkpoint Blockade in Patients with Triple-Negative Breast Cancer vol.15, pp.4, 2020, https://doi.org/10.1007/s11523-020-00730-0
  15. The nature of triple-negative breast cancer classification and antitumoral strategies vol.18, pp.4, 2013, https://doi.org/10.5808/gi.2020.18.4.e35
  16. PD-L1 Glycosylation and Its Impact on Binding to Clinical Antibodies vol.20, pp.1, 2013, https://doi.org/10.1021/acs.jproteome.0c00521
  17. Cancer Vaccines, Adjuvants, and Delivery Systems vol.12, pp.None, 2013, https://doi.org/10.3389/fimmu.2021.627932
  18. B7-H7 (HHLA2) inhibits T-cell activation and proliferation in the presence of TCR and CD28 signaling vol.18, pp.6, 2013, https://doi.org/10.1038/s41423-020-0361-7