• Title/Summary/Keyword: Precision landing

Search Result 67, Processing Time 0.026 seconds

Fabrication and Investigation of a Method of the Reduced-Stiction Slider (Micro Indentor를 이용한 Stiction Free Slider 개발)

  • 박준우;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.842-845
    • /
    • 2000
  • It is essential to reduce stiction between the slider and the disk for super-smooth media such as glass disk for high density recording. We developed a stiction-reduced slider by fabricating mechanical bumps on the air bearing surface of the slider by indentation technique. This paper presents a possibility and concept of Stiction-Free-Slider which can operate on the data zone of a magnetic disk. The slider hat many bumps and their heights are in the tens of nm range. The SFS shows good performance on the data zone. Moreover, little wear of the bumps was observed when the preload was small.

  • PDF

Slope Detecting and Walking Algorithm of a Quadruped Robot Using Contact Forces (접촉 반력을 이용한 4 족 보행로봇의 경사면 감지 및 보행 알고리즘)

  • Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.138-147
    • /
    • 1999
  • For autonomous navigation, a legged robot should be able to walk over irregular terrain and adapt itself to variation of supporting surface. Walking through slope is one of the typical tasks for such case. Robot needs not only to change foot trajectory but also to adjust its configuration to the slope angle for maintaining stability against gravity. This paper suggests such adaptation algorithm for stable walking which uses feedback of reaction forces at feet. Adjusting algorithm of foot trajectory was studied with the estimated angel of slope without visual feedback. A concept of virtual slope angle was introduced to adjust body configuration against slope change of the supporting terrain. Regeneration of foot trajectory also used this concept for maintaining its stable walking against unexpected landing point.

  • PDF

A Simulation of TV microphonic phenomenon due to Shadow mask Vibration (새도우 마스크 진동에 의한 TV 마이크로포닉 현상 시뮬레이션)

  • Lim, Jin-Soo;Lee, Soo-Hun;Lee, Jae-Eung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.144-152
    • /
    • 1995
  • TV microphonic phenomenon (black patterns overlapped on the image when TV sound is set too high) was studied experimentally. It was found that this phenomenon was due to the vibration generated at speakers, and transmitted to the CRT through the TV cabinet structure. Based on this fact, a simulative study was carried out on the assumption that the vibratory motion of the shadow mask located in the CRT could cause the landing error of electronic beam. The result of the simulation corresponded qualitatively with experi- mentally observed facts.

  • PDF

A Trend Survey on Precision Positioning Technology for Drones (드론 정밀 측위 기술 동향)

  • J.H. Lee;J. Jeon;K. Han;Y. Cho;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.11-19
    • /
    • 2023
  • Drones, which were early operated by remote control, have evolved to enable autonomous flight by combining various sensors and software tools. In particular, autonomous flight of drones was possible since the application of GNSS-RTK (global navigation satellite system with real-time kinematic positioning), a precision satellite navigation technology. For instance, unmanned drone delivery based on GNSS-RTK data was demonstrated for pizza delivery in Korea for the first time in 2021. However, the vulnerabilities of GNSS-RTK should be overcome for delivery drones to be commercialized. In particular, jamming in the navigation system and low positioning accuracy in urban areas should be addressed. Solving these two problems can lead to stable flight, takeoff, and landing of drones in urban areas, and the corresponding solutions are expected to establish a hybrid positioning technology. We discuss current trends in hybrid positioning technology that can either replace or complement GNSS-RTK for stable drone autonomous flight.

A Study on GBAS Curved Approach Flight Test in Taean Airport (태안비행장 GBAS Curved Approach 비행시험에 관한 연구)

  • Kim, Woo-Ri-Ul;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Due to the rapid increase in air traffic worldwide, ICAO has replaced the existing navigation equipment with equipment based on satellite navigation. As a part of that work, ICAO was planning to replace conventional takeoff and landing service using ILS with GBAS. Unlike ILS, GBAS which uses precision approach service inducing aircraft to airport and satellite based augmentation system providing precise position information service surrounding airport is capable of providing a required performance by only a system, regardless of the number of systems, and has an advantage that it is possible curved approach. In this paper, fuel reduction of ILS approach procedures and GBAS curved approach procedures is estimated and determined by flight test in Taean Airport.

A Study on Prevention as result of Controlled-Flight-Into-Terrain Accident - Focusing on Guam accident, Mokpo accident, Gimhae accident (Controlled-Flight-Into-Terrain 항공 사고 예방에 관한 연구 - 괌사고, 목포사고, 김해사고 중심으로 -)

  • Byeon, Soon-Cheol;Song, Byung-Heum;Lim, Se-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.1
    • /
    • pp.18-28
    • /
    • 2008
  • The purpose of this study is leading to prevent the major causes of commercial-aviation fatalities about controlled-flight-into-terrain(CFIT) in approach-and-landing accidents. The paper of major analysis for controlled flight into terrain(CFIT) was Guam accident, Mokpo accident and Gimhae accident in commercial transport-aircraft accidents from 1993 through 2002. CFIT occurs when an airworthy aircraft under the control of the flight crew is flown unintentionally into terrain, obstacles or water, usually with no prior awareness by the crew. This type of accident can occur during most phases of flight, but CFIT is more common during the approach-and-landing phase. Ninety-five percent of the Guam accident, Mokpo accident, and Gimhae accident where weather was known involved IMC, fog, and rain. The paper believed that prevention for CFIT accident was education and training for flying crew and upgrade for equipment such as EGPWS, and need more research for professional organizations of airlines, and accomplishing precision approaches should be a high priority.

  • PDF

Detection of Moving Position of AGV Using Rotating LSB(Laser Slit Beam) (회전 레이져 슬릿 빔을 이용한 AGV 이동위치 검출)

  • Kim, Seon-Ho;Park, Gyeong-Taek;Park, Geon-Guk;An, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.137-144
    • /
    • 2001
  • The major movement blocks of the container are the range between the apron and the designation points on yard in container terminals. The yard tractor drived by operator takes charge of it's movement in conventional container terminals. In automated container terminal, AGV(automatic guided vehicle) takes charge of a yard tractor's role and information of navigation path are ordered from upper control system. The automated container terminal facilities must have the docking system that guides landing zinc to execute high speed travelling and precision positioning. This paper describes the new docking method with the rotating LSB(laser slit beam) generator and two pair of photo receiver. The LSB generator is installed on the fixed ground and the photo receiver is implemented on the moving vehicle such as AGV. The proposed docking system is implemented to confirm it's function and accuracy. The accuracy of measured moving position is represented in ±5mm at 1 data sampling.

  • PDF

Design of a Mechanism for Reproducing Hovering Flight of Insects (곤충의 호버링 비행을 구현하는 메카니즘의 설계)

  • 정세용;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.826-831
    • /
    • 2004
  • Recently, studies have been carried out to develop unmanned Micro Air Vehicles(MAVs) that can search and monitor inside buildings during urban warfare or rescue operations in hazardous environments. However, existing fixed-wing and rotary-wing MAVs cannot travel at extremely low or high speeds, hover in place, or change directions instantly. This has lead researches to search for other flight methods that could overcome those drawbacks. Insect flight principles and its applications to MAVs are being studied as an alternative flight method. To take flight, insects flap and rotate their wings. These wing motions allow for high maneuverability flight such as hovering, vertical take off and landing, and quick acceleration and deceleration. This paper proposes a method for designing a mechanism that reproduces hovering insect flight, the basis for all other forms of insect flight. The design of a mechanism that can reproduce the motion that causes maximum lift is proposed, the required specifications are calculated, and a method for reproducing hovering insect flight with a single motor is presented. Also, feasibility of the design was confirmed by simulation.

  • PDF

A Study on Motion Planning Generation of Jumping Robot Control Using Model Transformation Method (모델 변환법을 이용한 점핑 로봇 제어의 운동경로 생성에 관한 연구)

  • 서진호;산북창의;이권순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.120-131
    • /
    • 2004
  • In this paper, we propose the method of a motion planning generation in which the movement of the 3-link leg subsystem is constrained to a slider-link and a singular posture can be easily avoided. The proposed method is the jumping control moving in vertical direction which mimics a cat's behavior. That is, it is jumping toward wall and kicking it to get a higher-place. Considering the movement from the point of constraint mechanical system, the robotic system which realizes the motion changes its configuration according to the position and it has several phases such as; ⅰ) an one-leg phase, ⅱ) in an air-phase. In other words, the system is under nonholonomic constraint due to the reservation of its momentum. Especially, in an air-phase, we will use a control method using state transformation and linearization in order to control the landing posture. Also, an iterative learning control algorithm is applied in order to improve the robustness of the control. The simulation results for jumping control will illustrate the effectiveness of the proposed control method.

Impact Damage of CFRP Laminated Shells with the Curvature (곡률반경을 갖는 CFRP 적층쉘의 충격손상)

  • 황재중;이길성;김영남;나승우;심재기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1341-1344
    • /
    • 2003
  • Studies on impact damage of composite laminate shells were fewer compared with those on impact behaviors to analyze time-load, displacement-load and impact energy - energy absorption. Up to date the studies were not enough to demonstrate suitability of their results because they were dependent on theories and numerical analyses. In particular, it is a well-known fact that there was a correlation between initial peak load and damage resistance of composite material flat plates imposed with low-speed impact, but studies on composite material shells with curvature were also very few. Actually structures such as wings or moving bodies of airplanes, motor cases and pressure containers of rockets are circular. And as low-speed impact load is imposed for optimal design of take-off and landing, and containers of airplanes, it is very important to analyze evaluation of behaviors and damaged areas. Therefore, in this paper to evaluate the impact characteristics of the CFRP laminate shell according to size of curvature quantitatively, it was to identify energy absorption and impact damage instruments according to change of impact speed.

  • PDF