• 제목/요약/키워드: Precipitation Method

검색결과 1,687건 처리시간 0.027초

강수량-함양량 관계와 10년 최소강수량 변화를 고려한 지하수 개발가능량 산정 기법 (Method of estimating exploitable groundwater amount considering relationship between precipitation and recharge and the variation of 10-year minimum precipitation)

  • 정일문;이정우;이정은;김민수
    • 한국수자원학회논문집
    • /
    • 제52권6호
    • /
    • pp.421-427
    • /
    • 2019
  • 우리나라의 지하수 개발가능량은 10년 빈도에 해당하는 갈수시의 강수량에 함양율을 곱한 값으로 정해져 왔다. 하지만 실무에서는 강수량의 빈도 해석을 생략하고 최근 10년 중 최소 강수량에 평균 함양율을 곱한 값을 개발가능량으로 사용하고 있다. 따라서 실제 10년 빈도의 갈수시 강수량이 적용되기 보다는 기간 선택에 따라 적용하는 강수량이 정해지는 모순이 발생한다. 이에 본 연구에서는 이동 10년 최소강수량 평균과 강수량의 규모를 고려한 함양량을 이용하여 개발가능량을 산정하는 방법을 제안하였다. 이 방법을 의왕 과천 성남지역에 적용하여 개발가능량을 산정하고 보편적으로 이용되고 있는 기존 방법에 의한 결과와 비교 검토하였다. 그 결과 극심한 가뭄해를 포함한 기간에서 10년 최소강수량을 선택할 경우 개발가능량이 과소하게 산정되는 문제를 이동 평균 최저 강수량을 사용함으로써 극복할 수 있는 것으로 확인되었다.

Effect of reaction temperature and time on the formation of calcite precipitation of recycled concrete aggregate (RCA) for drainage applications

  • Boo Hyun Nam;Jinwoo An;Toni Curate
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.65-75
    • /
    • 2023
  • Recycled concrete aggregate (RCA) is widely used as a construction material in road construction, concrete structures, embankments, etc. However, it has been reported that calcite (CaCO3) precipitation from RCA can be a cause of clogging when used in drainage applications. An accelerated calcite precipitation (ACP) procedure has been devised to evaluate the long-term geochemical performance of RCA in subsurface drainage systems. While the ACP procedure was useful for the French Drain application, there remained opportunities for improvement. In this study, key factors that control the formation of calcite precipitation were quantitatively evaluated, and the results were used to improve the current prototype ACP method. A laboratory parametric study was carried out by investigating the effects of reaction temperature and time on the formation of calcite precipitation of RCA, with determining an optimum reaction temperature and time which maximizes calcite precipitation. The improved ACP procedure was then applied to RCA samples that were graded for Type I Underdrain application, to compare the calcite precipitation. Two key findings are (1) that calcite precipitation can be maximized with the optimum heating temperature (75℃) and time (17 hours), and (2) the potential for calcite precipitation from RCA is not as significant as for limestone. With the improved ACP procedure, the total amount of calcite precipitation from RCAs within the life cycle of a drain system can be determined when RCAs from different sources are used as pipe backfill materials in a drain system.

Application of machine learning for merging multiple satellite precipitation products

  • Van, Giang Nguyen;Jung, Sungho;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.134-134
    • /
    • 2021
  • Precipitation is a crucial component of water cycle and play a key role in hydrological processes. Traditionally, gauge-based precipitation is the main method to achieve high accuracy of rainfall estimation, but its distribution is sparsely in mountainous areas. Recently, satellite-based precipitation products (SPPs) provide grid-based precipitation with spatio-temporal variability, but SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution quite coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation using Automatic weather system (AWS) in Korea and multiple SPPs(i.e. CHIRPSv2, CMORPH, GSMaP, TRMMv7) during the period of 2003-2017. And this study used a machine learning based Random Forest (RF) model for generating new merging precipitation. In addition, several statistical linear merging methods are used to compare with the results of the RF model. In order to investigate the efficiency of RF, observed data from 64 observed Automated Synoptic Observation System (ASOS) were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the random forest model showed higher accuracy than each satellite rainfall product and spatio-temporal variability was better reflected than other statistical merging methods. Therefore, a random forest-based ensemble satellite precipitation product can be efficiently used for hydrological simulations in ungauged basins such as the Mekong River.

  • PDF

기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증 (Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration)

  • 김세현;김현미;계준경;이승우
    • 대기
    • /
    • 제25권1호
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

서울지역 강수 산성도의 장기적인 경향분석 (An Analysis of Long-term Trends in Precipitation Acidity of Seoul, Korea)

  • 강공언;임재현;김희강
    • 한국대기환경학회지
    • /
    • 제13권1호
    • /
    • pp.9-18
    • /
    • 1997
  • Precipitation samples were collected by the wet- only event sampling method from Seoul during September 1991 to April 1995. These samples were analyzed for the concentrations of the major ionic components (N $O_3$$^{[-10]}$ , N $O_2$$^{[-10]}$ , S $O_4$$^{2-}$, C $l^{[-10]}$ , $F^{[-10]}$ , N $a^{+}$, $K^{+}$, $Ca^{2+}$, $Mg^{2+}$, and N $H_4$$^{+}$), pH, and electric conductivity. During the study period, a total of 182 samples were collected, but only 163 samples were used for the data analysis via quality assurance of precipitation chemistry data. The volume-weighted pH was found to be 4.7. The major acidifying species from our precipitation studies were identified to be non-seasalt sulfate (84$\pm$9 $\mu$eq/L) and nitrate (24$\pm$2 $\mu$eq/L) except for chloride. Because the Cl/Na ratio in the precipitation was close to the ratio in seawater. If all of the non-seasalt sulfate and nitrate were in the form of sulfuric and nitric acids, the mean pH in the precipitation could have been as low as 3.7 lower than the computed value. Consequently, the difference between two pH values indicate that the acidity of precipitation was neutralized by alkaline species. The equivalent concentration ratio of sulfate to nitrate was 3.5, indicating that sulfuric and nitric acids can comprise 78% and 22% of the precipitation acidity, respectively. Analysis of temporal trend in the measured acidity and ionic components were also performed using the linear regression method. The precipitation acidity generally showed a significantly decreasing trend, which was compatible with the pattern of the ratio (N $H_4$$^{+}$+C $a^{2+}$)/ (nss-S $O_4$$^{2-}$+N $O_3$$^{[-10]}$ ).).

  • PDF

Generating global warming scenarios with probability weighted resampling and its implication in precipitation with nonparametric weather generator

  • Lee, Taesam;Park, Taewoong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.226-226
    • /
    • 2015
  • The complex climate system regarding human actions is well represented through global climate models (GCMs). The output from GCMs provides useful information about the rate and magnitude of future climate change. Especially, the temperature variable is most reliable among other GCM outputs. However, hydrological variables (e.g. precipitation) from GCM outputs for future climate change contain too high uncertainty to use in practice. Therefore, we propose a method that simulates temperature variable with increasing in a certain level (e.g. 0.5oC or 1.0oC increase) as a global warming scenario from observed data. In addition, a hydrometeorological variable can be simulated employing block-wise sampling technique associated with the temperature simulation. The proposed method was tested for assessing the future change of the seasonal precipitation in South Korea under global warming scenario. The results illustrate that the proposed method is a good alternative to levy the variation of hydrological variables under global warming condition.

  • PDF

침전법과 고상반응법으로 제조한 $ZnGa_2O_4$ 형광체의 특성 (Characteristics of $ZnGa_2O_4$ phosphor prepared by Precipitation method and Solid-state reaction method)

  • 차재혁;김세준;곽현호;최형욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.383-384
    • /
    • 2007
  • The nano and micro-sized $ZnGa_2O_4$ phosphor were prepared by precipitation method and solid-state method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The result of XRD analysis showed that $ZnGa_2O_4$ spinel structure was formed at as-prepared in the case of precipitation method. However, micro-sized phosphor was required high heating treatment to have a satisfactory spinel structure. The CL intensity of nano-sized phosphor was about 4-fold higher than that of micro-sized phosphor. The emission spectra of all $ZnGa_2O_4$ phosphor show a self activated blue emission band at around 420 nm in the wide range of 300~600 nm.

  • PDF

SCS-CN방법을 이용한 평창강 유역의 강수 함양량 선정 (Estimation of Precipitation Recharge in the Pyungchang River Basin Using SCS-CN Method)

  • 이승현;배상근
    • 한국환경과학회지
    • /
    • 제13권12호
    • /
    • pp.1033-1039
    • /
    • 2004
  • The methodology developed by Soil Conservation Service for determination of runoff value from precipitation is applied to estimate the precipitation recharge in the Pyungchang river basin. Two small areas of the basin are selected for this study. The CN values are determined by considering the type of soil, soil cover and land use with the digital map of 1:25,000. Forest covers more than $94{\%}$ of the study area.. The CN values for the study area vary between 47 in the forest area and 94 in the bare soil under AMC 2 condition. The precipitation recharge rate is calculated for the year when the precipitation data is available since 1990. To obtain the infiltration rate, the index of CN and five day antecedent moisture conditions are applied to each precipitation event during the study period. As a result of estimation, the value of precipitation recharge ratio in the study area vary between $15.2{\%}\;and\;35.7{\%}$ for the total precipitation of the year. The average annual precipitation recharge rate is $26.4{\%}\;and\;26.8{\%}$, meaning 377.9mm/year and 397.5mm/year in each basin.

급냉응고 및 열간가공된 Al-Zr계 합금의 석출거동 (Precipitation Behaviors of Rapidly Solidified and Hot Worked Al-Zr Base Alloys)

  • 박원욱
    • 한국주조공학회지
    • /
    • 제15권2호
    • /
    • pp.194-200
    • /
    • 1995
  • Rapidly Solidified (RS) Al-Zr base splats with various alloy contents were prepared by atomization-splat quenching method to understand the continuous and discontinuous precipitation in the aged alloys. And the RS alloys were consolidated by hot extrusion and swaging to analyze the effect of plastic deformation on the precipitation behavior. Discontinuous precipitation dominated at relatively low temperature in the Al-Zr alloy, whereas both V additions to Al-Zr alloys and hot metal working appeared to suppress the discontinuous precipitation. As continuous precipitation is favored in the grain interiors, the driving force for discontinuous precipitation become to disappear with a further process.

  • PDF