• Title/Summary/Keyword: Pre-strain effect

Search Result 112, Processing Time 0.024 seconds

Low-dose Radiation Induces Antitumor Effects and Erythrocyte System Hormesis

  • Yu, Hong-Sheng;Liu, Zi-Min;Yu, Xiao-Yun;Song, Ai-Qin;Liu, Ning;Wang, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4121-4126
    • /
    • 2013
  • Objective: Low dose radiation may stimulate the growth and development of animals, increase life span, enhance fertility, and downgrade the incidence of tumor occurrence.The aim of this study was to investigate the antitumor effect and hormesis in an erythrocyte system induced by low-dose radiation. Methods: Kunming strain male mice were subcutaneously implanted with S180 sarcoma cells in the right inguen as an experimental in situ animal model. Six hours before implantation, the mice were given 75mGy whole body X-ray radiation. Tumor growth was observed 5 days later, and the tumor volume was calculated every other day. Fifteen days later, all mice were killed to measure the tumor weight, and to observe necrotic areas and tumor-infiltration-lymphoreticular cells (TILs). At the same time, erythrocyte immune function and the level of 2,3-diphosphoglyceric acid (2,3-DPG) were determined. Immunohistochemical staining was used to detect the expression of EPO and VEGFR of tumor tissues. Results: The mice pre-exposed to low dose radiation had a lower tumor formation rate than those without low dose radiation (P < 0.05). The tumor growth slowed down significantly in mice pre-exposed to low dose radiation; the average tumor weight in mice pre-exposed to low dose radiation was lighter too (P < 0.05). The tumor necrosis areas were larger and TILs were more in the radiation group than those of the group without radiation. The erythrocyte immune function, the level of 2,3-DPG in the low dose radiation group were higher than those of the group without radiation (P < 0.05). After irradiation the expression of EPO of tumor tissues in LDR group decreased with time. LDR-24h, LDR-48h and LDR-72h groups were all statistically significantly different from sham-irradiation group. The expression of VEGFR also decreased, and LDR-24h group was the lowest (P < 0.05). Conclusion: Low dose radiation could markedly increase the anti-tumor ability of the organism and improve the erythrocyte immune function and the ability of carrying $O_2$. Low-dose total body irradiation, within a certain period of time, can decrease the expression of hypoxia factor EPO and VEGFR, which may improve the situation of tumor hypoxia and radiosensitivity of tumor itself.

Investigation on Resistance to Hydrogen Embrittlement of High Nitrogen Austenitic Steels for Hydrogen Pipe by the Disc Pressure Test and the Tensile Test on Hydrogen Pre-charged Specimens (디스크 시험 및 수소처리 인장시험에 의한 수소배관용 고질소 스테인리스강의 내수소취성 평가 연구)

  • Dong-won, Shin;Min-kyung, Lee;Jeong Hwan, Kim;Ho-seong, Seo;Jae-hun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.16-23
    • /
    • 2022
  • In this study, characteristics of effect on hydrogen gas was investigated to hydrogen embrittlement by disk and tensile tests. The developed and commercial alloy was fabricated to a plate material made from an alloy ingot. The prepared materials were processed in the form of a disk to measure rupture pressure by hydrogen and helium gas at a rate of 0.1 to 1,000 bar/min. In the hydrogen pre-charged tensile test, a specimen was hydrogenated using an anode charging method, and the yield strength, ultimate tensile strength, elongation, and reduction in area rate were carried by a strain rate test. Also, the microstructure was observed to the fracture surface of the tensile test specimen. As a result, the developed materials satisfied endurable hydrogen embrittlement, and the fractured surface showed a brittleness fracture surface with a depth of several ㎛, but dimple due to ductile fracture could be observed.

Effects of Precipitate Element Addition on Microstructure and Magnetic Properties in Magnetostrictive Fe83Ga17 alloy

  • Li, Jiheng;Yuan, Chao;Zhang, Wenlan;Bao, Xiaoqian;Gao, Xuexu
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • The <100> oriented $Fe_{83}Ga_{17}$ alloys with various contents of NbC or B were prepared by directionally solidification method at the growth rate of $720mm{\cdot}h^{-1}$. With a small amount of precipitates, the columnar grains grew with cellular mode during directional solidification process, while like-dendrite mode of grains growth was observed in the alloys with higher contents of 0.5 at% due to the dragging effect of precipitates on the boundaries. The NbC precipitates disperse both inside grains and along the boundaries of $Fe_{83}Ga_{17}$ alloys with NbC addition, and the Fe2B secondary phase particles preferentially distribute along the grain boundaries in B-doped alloys. Precipitates could affect grain growth and improved the <100> orientation during directional solidification process. Small amount of precipitate element addition slightly increased the magnetostrictive strain, and a high value of 335 ppm under pre-stress of 15 MPa was achieved in the alloys with 0.1 at% NbC. Despite the fact that the effect on magnetic induction density of small amount of precipitates could be negligible, the coercivity markedly increased with addition of precipitate element for $Fe_{83}Ga_{17}$ alloy due to the retarded domain motion resulted by precipitates.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies (비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 2008
  • In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.

Simulation of Ultrasonic Stress During Impact Phase in Wire Bonding

  • Mayer, Michael
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.7-11
    • /
    • 2013
  • As thermosonic ball bonding is developed for more and more advanced applications in the electronic packaging industry, the control of process stresses induced on the integrated circuits becomes more important. If Cu bonding wire is used instead of Au wire, larger ultrasonic levels are common during bonding. For advanced microchips the use of Cu based wire is risky because the ultrasonic stresses can cause chip damage. This risk needs to be managed by e.g. the use of ultrasound during the impact stage of the ball on the pad ("pre-bleed") as it can reduce the strain hardening effect, which leads to a softer deformed ball that can be bonded with less ultrasound. To find the best profiles of ultrasound during impact, a numerical model is reported for ultrasonic bonding with capillary dynamics combined with a geometrical model describing ball deformation based on volume conservation and stress balance. This leads to an efficient procedure of ball bond modelling bypassing plasticity and contact pairs. The ultrasonic force and average stress at the bond zone are extracted from the numerical experiments for a $50{\mu}m$ diameter free air ball deformed by a capillary with a hole diameter of $35{\mu}m$ at the tip, a chamfer diameter of $51{\mu}m$, a chamfer angle of $90^{\circ}$, and a face angle of $1^{\circ}$. An upper limit of the ultrasonic amplitude during impact is derived below which the ultrasonic shear stress at the interface is not higher than 120 MPa, which can be recommended for low stress bonding.

Varietal Difference in Amylase Activity of Larval Digestive Fluid of the Silkworm, Bombyx mori, reared on Artificial Diet (인공사료로 사육한 누에의 소화액Amylase활성에 있어서 품종간관 차이)

  • 문재유;설광렬
    • Journal of Sericultural and Entomological Science
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 1983
  • 1. The varietal difference in amylase activity of the digestive fluid of the 5th instar larvae reared on the artificial diet was investigated, using the parent commercial silkworm varieties of Japanese strain. The amylase activity was large different among silkworm varieties. The activity was strong in Hansaeng-1, Jam 115 and Jam 117, medium in Hansaeng-3, Jam 113, Jam 119, and Jam 201, weak in Jam 107, Jam 121 and Gyeongchu. The amylase of the digestive fluid of ten parent commercial silkworm varieties is possible-(ae) type, compared with +(+$\^$ae/) type of Daizo. 2. To investigate the effect of a-amylase pre-treatment of the artificial diet, larvae were fed with the diet treated by a-amylase during 4th-5th instar periods. The blood sugar content and cocoon qualities were slightly higher in the experimental larvae than those in the control, while showing the slight less body weight, amylase activity and dietary efficient.

  • PDF

Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model

  • Moradloo, Javad;Naserasadi, Kiarash;Zamani, Habib
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.747-760
    • /
    • 2018
  • In the present study, a methodology for developing fragilities of arch concrete dams to assess their performance against seismic hazards is introduced. Firstly, the probability risk and fragility curves are presented, followed by implementation and representation of the way this method is used. Amirkabir arch concrete dam was subjected to non-linear dynamic analyses. A modified three dimensional rotating smeared crack model was used to take the nonlinear behavior of mass concrete into account. The proposed model considers major characteristics of mass concrete. These characteristics are pre-softening behavior, softening initiation criteria, fracture energy conservation, suitable damping mechanism and strain rate effect. In the present analysis, complete fluid-structure interaction is included to account for appropriate fluid compressibility and absorptive reservoir boundary conditions. In this study, the Amirkabir arch concrete dam is subjected to a set of 8 three-component earthquakes each scaled to 10 increasing intensity levels. Using proposed nonlinear smeared crack model, nonlinear analysis is performed where the structure is subjected to a large set of scaled and un-scaled ground motions and the maximum responses are extracted for each one and plotted. Based on the results, fragility curves were plotted according to various and possible damages indexes. Discrete damage probabilities were calculated using statistical methods for each considered performance level and incremental nonlinear analysis. Then, fragility curves were constructed based on the lognormal distribution assumption. Two damage indexes were introduced and compared to one another. The results indicate that the dam has a proper stability under earthquake conditions at MCE level. Moreover, displacement damages index is more conservative and impractical in the fragility analysis than tensional damage index.

Effect of Proton Pump Inhibitors, Mucolytics and Steroids on Voice Outcomes After Laryngomicrosurgery (후두미세수술 후 양성자펌프억제제, 점액용해제, 스테로이드가 음성에 미치는 영향)

  • Choi, Yeon Soo;Kim, Ji Won
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.33 no.1
    • /
    • pp.31-36
    • /
    • 2022
  • Background and Objectives Proton pump inhibitors (PPIs), mucolytics, and steroids were commonly recommended after phonomicrosurgery to prevent worsening of vocal fold (VF) scar formation and subglottal swelling. However, there is no consensus about whether laryngeal reflux and thick discharge are associated with the voice outcomes following phonomicrosurgery in benign VF lesions. The purpose of this study is to examine voice outcomes of use of PPIs, mucolytics,and steroids after phonomicrosurgery. Materials and Method This randomized controlled study is performed with patients undergoing laryngomicroscopic surgery for VF polyp and cyst. Participants were randomly assigned to 1) no medication, 2) PPIs, 3) PPIs+mucolytics, and 4) PPIs+mucolytics+steroids for 2 months postoperatively. Grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, stroboscopic examination, aerodynamic assessment, acoustic analysis, and Voice Handicap Index-10 (VHI-10) were performed pre- and post-operatively at 2 months. Parameters were compared among four groups. Results Among 85 patients, a total of 50 patients were included. The VHI-10, perceptual and acoustic parameters improved in all groups after surgery. However, there was no significant difference in those parameters among all groups. Conclusion PPIs, mucolytics, and steroids did not significantly influence voice outcomes after phonomicrosurgery in patients with benign VF lesions.

Experimental research on the behavior of circular SFRC columns reinforced longitudinally by GFRP rebars

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.513-525
    • /
    • 2023
  • This research presents the experimental and theoretical evaluations on circular steel-fiber-reinforced-concrete (SFRC) columns reinforced by glass-fiber-reinforced-polymer (GFRP) rebar under the axial compressive loading. Test programs were designed to investigate and compare the effect of different parameters on the structural behavior of columns by performing tests. Theses variables included conventional concrete (CC), fiber concrete (FC), steel/GFRP longitudinal rebars, and transversal rebars configurations. A total of 16 specimens were constructed and categorized into four groups in terms of different rebar-concrete configurations, including GFRP-rebar-reinforced-CC columns (GRCC), GFRP-rebar-reinforced-FC columns (GRFC), steel-rebar-reinforced-CC columns (SRCC) and steel-rebar- reinforced-FC columns (SRFC). Experimental observations displayed that failure modes and cracking patterns of four groups of columns were similar, especially in pre-peak branches of load-deflection curves. Although the average ultimate axial load of columns with longitudinal GFRP rebars was obtained by 17.9% less than the average ultimate axial load of columns with longitudinal steel rebars, the average axial ductility index (DI) of them was gained by 10.2% higher than their counterpart columns. Adding steel fibers (SFs) into concrete led to the increases of 7.7% and 6.7% of the axial peak load and the DI of columns than their counterpart columns with CC. The volumetric ratio had greater efficiency on peak loads and DIs of columns than the type of transversal reinforcement. A simple analytical equation was proposed to predict the axial compressive capacity of columns by considering the axial involvement of longitudinal GFRP rebars, volumetric ratio, and steel spiral/hoop rebar. There was a good correlation between test results and predictions of the proposed equation.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.