• Title/Summary/Keyword: Pre-computation

Search Result 174, Processing Time 0.031 seconds

Random Pixel Sampling-based Backlight Dimming for Liquid Crystal Display (LCD 디스플레이를 위한 무작위 화소 추출 기반 백라이트 디밍)

  • Kang, Suk-Ju;Kim, Young Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.174-180
    • /
    • 2014
  • In this paper, we propose the random pixel sampling technique to solve the high computational complexity in the perceptual SSIM-based backlight dimming. Specifically, the proposed algorithm selects pixels in a total frame considering the pre-defined number, and generates the block by combining these pixels. Then, it estimates parameters, which are required in the SSIM calculation, in the combined block, and hence, it can reduce the computation time significantly. In the experimental results, the proposed algorithm reduced the average power consumption and computation time by up to 38.1776 % and 99.5828 %, respectively while preserving the average SSIM., compared with the conventional algorithm.

Color Correction with Optimized Hardware Implementation of CIE1931 Color Coordinate System Transformation (CIE1931 색좌표계 변환의 최적화된 하드웨어 구현을 통한 색상 보정)

  • Kim, Dae-Woon;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.10-14
    • /
    • 2021
  • This paper presents a hardware that improves the complexity of the CIE1931 color coordinate algorithm operation. The conventional algorithm has disadvantage of growing hardware due to 4-Split Multiply operations used to calculate large bits in the computation process. But the proposed algorithm pre-calculates the defined R2X, X2R Matrix operations of the conventional algorithm and makes them a matrix. By applying the matrix to the images and improving the color, it is possible to reduce the amount of computation and hardware size. By comparing the results of Xilinx synthesis of hardware designed with Verilog, we can check the performance for real-time processing in 4K environments with reduced hardware resources. Furthermore, this paper validates the hardware mount behavior by presenting the execution results of the FPGA board.

Efficient Architectures for Modular Exponentiation Using Montgomery Multiplier (Montgomery 곱셈기를 이용한 효율적인 모듈라 멱승기 구조)

  • 하재철;문상재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.63-74
    • /
    • 2001
  • Modular exponentiation is an essential operation required for implementations of most public key cryptosystems. This paper presents two architectures for modular exponentiation using the Montgomery modular multiplication algorithm combined with two binary exponentiation methods, L-R(Left to Left) algorithms. The proposed architectures make use of MUXes for efficient pre-computation and post-computation in Montgomery\`s algorithm. For an n-bit modulus, if mulitplication with m carry processing clocks can be done (n+m) clocks, the L-R type design requires (1.5n+5)(n+m) clocks on average for an exponentiation. The R-L type design takes (n+4)(n+m) clocks in the worst case.

Pre-Analysis CFD Simulation of Air Path Design for Soundproof Photovoltaic-Thermal Wall (방음벽 PVT의 공기유로 설계를 위한 CFD 시뮬레이션 사전 분석 연구)

  • Kim, Yu-Jin;Kim, Ki-Bong;Lee, Euy-Joon;Kang, Eun-Chul
    • New & Renewable Energy
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • The Korean government announced various energy policies, such as the to reduce 37% of the business-as-usual (BAU) greenhouse gas emissions by 2030. The policies aim to increase the renewable electricity generation ratio to 20% by 2030. PVT is a hybrid technology, which combines photovoltaic (PV) and solar collectors. It is capable of generating electricity and thermal energy simultaneously. It has a great potential to be used as a renewable and clean solar energy. However, there exists a shortage of space for the installation of PVT systems in Korea. To overcome this, in this paper proposes four types of soundproof wall PVT air channels, which were designed and optimized, based on the CFD (Computation Fluid Dynamic) analysis results. The thermal energy generation for multiple PVT units connected in series and pressure drop sensitivity were analyzed, depending on inlet velocity.

Fast Generation of 3-D Video Holograms using a Look-up Table and Temporal Redundancy of 3-D Video Image (룩업테이블과 3차원 동영상의 시간적 중복성을 이용한 3차원 비디오 홀로그램의 고속 생성)

  • Kim, Seung-Cheol;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1076-1085
    • /
    • 2009
  • In this paper, a new method for efficient computation of CGH patterns for 3-D video images is proposed by combined use of temporal redundancy and look-up table techniques. In the conventional N-LT method, fringe patterns for other object points on that image plane can be obtained by simply shifting these pre-calculated PFP (Principle Fringe Patterns). But there have been many practical limitations in real-time generation of 3-D video holograms because the computation time required for the generation of 3-D video holograms must be massively increased compared to that of the static holograms. On the other hand, as ordinary 3-D moving pictures have numerous similarities between video frames, called by temporal redundancy, and this redundancy is used to compress the video image. Therefore, in this paper, we proposed the efficient hologram generation method using the temporal redundancy of 3-D video image and N-LT method. To confirm the feasibility of the proposed method, some experiments with test 3-D videos are carried out, and the results are comparatively discussed with the conventional methods in terms of the number of object points and computation time.

The viterbi decoder implementation with efficient structure for real-time Coded Orthogonal Frequency Division Multiplexing (실시간 COFDM시스템을 위한 효율적인 구조를 갖는 비터비 디코더 설계)

  • Hwang Jong-Hee;Lee Seung-Yerl;Kim Dong-Sun;Chung Duck-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.61-74
    • /
    • 2005
  • Digital Multimedia Broadcasting(DMB) is a reliable multi-service system for reception by mobile and portable receivers. DMB system allows interference-free reception under the conditions of multipath propagation and transmission errors using COFDM modulation scheme, simultaneously, needs powerful channel error's correction ability. Viterbi Decoder for DMB receiver uses punctured convolutional code and needs lots of computations for real-time operation. So, it is desired to design a high speed and low-power hardware scheme for Viterbi decoder. This paper proposes a combined add-compare-select(ACS) and path metric normalization(PMN) unit for computation power. The proposed PMN architecture reduces the problem of the critical path by applying fixed value for selection algorithm due to the comparison tree which has a weak point from structure with the high-speed operation. The proposed ACS uses the decomposition and the pre-computation technique for reducing the complicated degree of the adder, the comparator and multiplexer. According to a simulation result, reduction of area $3.78\%$, power consumption $12.22\%$, maximum gate delay $23.80\%$ occurred from punctured viterbi decoder for DMB system.

Displacement tracking of pre-deformed smart structures

  • Irschik, Hans;Krommer, Michael;Zehetner, Christian
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • This paper is concerned with the dynamics of hyperelastic solids and structures. We seek for a smart control actuation that produces a desired (prescribed) displacement field in the presence of transient imposed forces. In the literature, this problem is denoted as displacement tracking, or also as shape morphing problem. One talks about shape control, when the displacements to be tracked do vanish. In the present paper, it is assumed that the control actuation is provided by imposed eigenstrains, e.g., by the electric field in piezoelectric actuators, or by thermal actuators, or via analogous physical effects, such as magneto-striction or pre-stress. Structures with a controlled eigenstrain-type actuation belong to the class of smart structures. The action of the eigenstrains can be conveniently characterized by actuation stresses. Our theoretical derivations are performed in the framework of the theory of small incremental dynamic deformations superimposed upon a statically pre-deformed configuration of a hyperelastic solid or structure. We particularly ask for a distribution of incremental actuation stresses, such that the incremental displacements follow exactly a prescribed trajectory field, despite the imposed incremental forces are present. An exact solution of this problem is presented under the assumption that the actuation stresses can be tailored freely and applied everywhere within the body. Extending a Neumann-type solution strategy, it is shown that the actuation stresses due to the distributed control eigenstrains must satisfy certain quasi-static equilibrium conditions, where auxiliary body-forces and auxiliary surface tractions are to be taken into account. The latter auxiliary loading can be directly computed from the imposed forces and from the desired displacement field to be tracked. Hence, despite the problem is a dynamic one, a straightforward computation of proper actuator distributions can be obtained in the framework of quasi-static equilibrium conditions. Necessary conditions for the functioning of this concept are presented. Particularly, it must be required that the intermediate configuration is infinitesimally superstable. Previous results of our group for the case of shape control and displacement tracking in linear elastic structures are included as special cases. The high potential of the solution is demonstrated via Finite Element computations for an irregularly shaped four-corner plate in a state of plain strain.

Comparison of the Mathematics Educational Values between Pre-service and In-service Elementary School Teachers (수학교육적 가치에 대한 예비 초등교사와 현직 초등교사의 인식 비교)

  • Yim, MinJae;Cho, SooYun;Pang, JeongSuk
    • Communications of Mathematical Education
    • /
    • v.34 no.3
    • /
    • pp.277-297
    • /
    • 2020
  • The purpose of this study was to identify and compare the mathematics educational values of pre-service and in-service elementary school teachers. For this purpose, we implemented a questionnaire investigating mathematics educational values and used principal component analysis which resulted in six components. These components were named as fun, problem-solving, representation, computation, ability, and explanation through systematic labeling processes. Both pre-service and in-service elementary school teachers considered problem-solving the most important and there was no statistical difference between the teacher groups. They also considered fun the least important and in-service elementary school teachers regarded it more important than pre-service counterparts did. All value components except explanation were regarded as important by in-service elementary school teachers, fourth-year pre-service teachers, and first-year pre-service teachers in order. The result of noticeable differences between pre-service and in-service elementary school teachers implies that actual teaching experience may affect teachers' mathematics educational values more than teacher preparation programs. Based on these findings, we need to discuss what should be regarded as important and worthwhile in teacher preparation programs to establish mathematics educational values for pre-service teachers. We also need to confirm whether the mathematics educational values by in-service elementary school teachers may be in line with what has been pursued in the national mathematics curriculum.

On the Development of 3D Finite Element Method Package for CEMTool

  • Park, Jung-Hun;Ahn, Choon-Ki;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2410-2413
    • /
    • 2005
  • Finite element method (FEM) has been widely used as a useful numerical method that can analyze complex engineering problems in electro-magnetics, mechanics, and others. CEMTool, which is similar to MATLAB, is a command style design and analyzing package for scientific and technological algorithm and a matrix based computation language. In this paper, we present new 3D FEM package in CEMTool environment. In contrast to the existing CEMTool 2D FEM package and MATLAB PDE (Partial Differential Equation) Toolbox, our proposed 3D FEM package can deal with complex 3D models, not a cross-section of 3D models. In the pre-processor of 3D FEM package, a new 3D mesh generating algorithm can make information on 3D Delaunay tetrahedral mesh elements for analyses of 3D FEM problems. The solver of the 3D FEM package offers three methods for solving the linear algebraic matrix equation, i.e., Gauss-Jordan elimination solver, Band solver, and Skyline solver. The post-processor visualizes the results for 3D FEM problems such as the deformed position and the stress. Consequently, with our new 3D FEM toolbox, we can analyze more diverse engineering problems which the existing CEMTool 2D FEM package or MATLAB PDE Toolbox can not solve.

  • PDF

Improved Parameter Computation Method Applications of Storage Function Model for the Han River Basin (저류함수모형 매개변수 산정 개선방법의 한강유역 적용)

  • Jeong, Dong-Kug;Jeon, Yong-Woon;Lee, Beum-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.149-158
    • /
    • 2008
  • The parameters of each basin, required for the accurate analysis of flood runoff using Storage Function Model, are estimated. Prior to the estimation, sensitivity analysis and extraction of new regional topographic factors for Han River basin are conducted. Based on the result, the outflow constant of basin model is calculated through regression analysis in relation with pre-flood runoff depth. The storage constant of basin model is derived by the optimum storage constant equation, according to the flood event of each basin. The model using the mentioned parameters was compared with K-Water model of Korea Water Resources Corporation and the model of Han River Flood Control Office, and proved to correspond to the observed hydrograph more.