DOI QR코드

DOI QR Code

Random Pixel Sampling-based Backlight Dimming for Liquid Crystal Display

LCD 디스플레이를 위한 무작위 화소 추출 기반 백라이트 디밍

  • Kang, Suk-Ju (Electrical Engineering, Dong-A University) ;
  • Kim, Young Hwan (Electronic and Electrical Engineering, Pohang University of Scienceand Technology)
  • 강석주 (동아대학교 전기공학과) ;
  • 김영환 (포항공과대학교 전자전기공학과)
  • Received : 2014.08.11
  • Accepted : 2014.11.03
  • Published : 2014.11.25

Abstract

In this paper, we propose the random pixel sampling technique to solve the high computational complexity in the perceptual SSIM-based backlight dimming. Specifically, the proposed algorithm selects pixels in a total frame considering the pre-defined number, and generates the block by combining these pixels. Then, it estimates parameters, which are required in the SSIM calculation, in the combined block, and hence, it can reduce the computation time significantly. In the experimental results, the proposed algorithm reduced the average power consumption and computation time by up to 38.1776 % and 99.5828 %, respectively while preserving the average SSIM., compared with the conventional algorithm.

본 논문에서는 인지 화질을 고려할 수 있는 측정 방법인 structural similarity (SSIM)기반의 백라이트 디밍에서 높은 계산량을 저감할 수 있는 무작위 화소 샘플링 기법을 제안한다. 제안한 방법에서는 우선 전체 프레임에서 미리 정의된 개수만큼의 화소를 무작위로 선택한 후 이를 블록 형태로 결합한다. 이 후 해당 블록에서 SSIM 계산에 필요한 변수들을 추정하기 때문에 한 프레임을 사용하는 기존 방법 대비 계산 시간을 큰 폭으로 줄일 수 있다. 실험 결과에서 기존 방법과 비교했을 때 제안한 방법은 평균 SSIM은 거의 유지하면서도 평균 파워 소모와 평균 계산 시간을 각각 38.1766 %, 99.5828 % 까지 줄일 수 있었다.

Keywords

References

  1. S. W. Choi, Y. H. Kim, and S.-J. Kang, "Histogram Matching-based Power Reduction Technique for OLED Display," Journal of The Institute of Electronics Engineers of Korea, vol. 51, no. 1, pp. 137-144, 2014. https://doi.org/10.5573/ieie.2014.51.1.137
  2. Y. H. Kim, S. H. Kwon, S. K. Park, W. K. Kim, and J. I. Han, "Flexible Display Technology and Trend," Journal of The Institute of Electronics Engineers of Korea, vol. 35, no. 8, pp. 84-91, 2008.
  3. N. Chang, I. Choi, and H. Shim, "DLS: dynamic backlight luminance scaling of liquid crystal display," IEEE Trans. on Very Large Scale Integration Systems, vol.12 issue 8, pp. 837-846, Aug. 2004.
  4. C.-C. Lai and C.-C. Tsai, "Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications," IEEE Trans. Consumer Electronics, vol. 54, no. 2, pp. 669-674, May 2008. https://doi.org/10.1109/TCE.2008.4560145
  5. S.-J. Kang and Y. H. Kim, "Image Integrity-based gray-level error control for low power liquid crystal displays," IEEE Trans. Consumer Electronics, vol. 55, no. 4, pp. 2401-2406, Nov. 2009. https://doi.org/10.1109/TCE.2009.5373816
  6. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Processing, Vol. 13, pp. 600-612, Apr. 2004. https://doi.org/10.1109/TIP.2003.819861
  7. S.-J. Kang, "SSIM preservation-based backlight dimming," Journal of Display Tech., vol.10, no.4, pp.247-250, April 2014. https://doi.org/10.1109/JDT.2014.2302299
  8. S.-J. Kang, "High Image Quality-based Backlight Dimming Using Low Computational Technique," IEEK Summer conference, pp. 675-677, 2014.
  9. T. H. Li, L. Zhengguo, T. Y. Han, S. Rahardja, and Y. Chuohuo, "A perceptually relevant MSE-based image quality," IEEE Trans. Image Processing, vol. 22, no. 11, pp. 4447-4459, Nov. 2013. https://doi.org/10.1109/TIP.2013.2273671
  10. Iranli, H. Fatemi, and M. Pedram, "HEBS: Histogram equalization for backlight scaling," Proc. of the conference on Design, Automation and Test in Europe, pp.346-351, March 2005.
  11. Kodak Image Suite. http://r0k.us/graphics/kodak/.
  12. ISO12640-2. http://www.iso.org/.
  13. G. Marchionini and G. Geisler, "The open video digital library," Digital Library Mag., vol. 8, no. 12, Dec. 2002.