• 제목/요약/키워드: Pozzolan

검색결과 108건 처리시간 0.024초

Silica의 형태가 Pozzolan 반응성에 미치는 영향 (The Effect of the Structural State of Silica on the Pozzolanic Reactivity)

  • 한기성
    • 한국세라믹학회지
    • /
    • 제11권1호
    • /
    • pp.10-18
    • /
    • 1974
  • The hydration at $23^{\circ}C$ between $Ca(OH)_2$ and siliceous materials with various compositions of silica gel and quartz were studied in paste state, and also diatomite was empolyed as another form of silica. The effect of the structural state of silica on the pozzolanic reactivity was investigated by X-ray, DTA, electron microscopy, and chemical analysis. The results obtained were as follows. (1) The molar ratio of $Ca(OH)_2$ to silica gel(C/Sg) being changed in 0.49, 0.81 and 1.22, the free $Ca(OH)_2$ was disappeared within six hours, three days and two weeks respectively and ill-crystallized CSH(I) was formed. However, in the case fo molar ratio of C/Sg=2.45, almost lime was remained uncombinedly after twenty four weeks yet. (2) Though the molar ratio C/Sg of diatomite was 0.71, the hydration was stabilized at three weeks and the result exhibited very peculiar characteristics from silica gel. (3) Pozzolanic reactivity of quartz was negligible, but $\alpha$-cristobalite in diatomite showed appreciable reactivity. (4) The thermal curves showed the exothermic peaks in the range 830 to $930^{\circ}C$ and lower broad peaks at high temperature in the initial steps of hydration, transfered to lower temperature with sharp peaks by proceeding of hydration. (5) The samples containing more silica gel exhibited higher pozzolanic reactivity and martar strength, but the diatomite gave remarkable result for them and they were matched to the strength development rate.

  • PDF

국산 저가형 실리카퓸을 이용한 고성능 콘크리트의 물리적 특성 분석 (Analysis of physical properties of high-performance concrete using domestic low-cost silica fume)

  • 김상도;윤경구;한승연;이겨레
    • 산업기술연구
    • /
    • 제37권1호
    • /
    • pp.32-36
    • /
    • 2017
  • In this study, as part of a research on the development of economical high-performance concrete with high strength and high quality, the physical properties of high-performance concrete were analyzed by substituting a certain amount of low-cost domestic silica fume exempted from the re-importation type distribution structure of the domestic production and the existing high-priced silica fume distribution structure. Performing tests to identify the physical properties of the fresh and hardened concrete and durability analogy of the concrete which use low-cost domestic silica fume and imported silica fume, the chloride ion penetration resistance test result showed that the strength difference between the low-cost silica fume and the imported silica fume is not big but the strength of the low-cost silica fume was measured higher than the imported silica fume. The chloride ion penetration resistance of all variables was measured as "very low". Since the low-cost domestic silica fume can be used as a high-performance admixture of concrete, the results suggest that it is possible to produce a more economical high-performance concrete.

A Study on High Performance Fine-Grained Concrete Containing Rice Husk Ash

  • Le, Ha Thanh;Nguyen, Sang Thanh;Ludwig, Horst-Michael
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.301-307
    • /
    • 2014
  • Rice husk ash (RHA) is classified as a highly reactive pozzolan. It has a very high silica content similar to that of silica fume (SF). Using less-expensive and locally available RHA as a mineral admixture in concrete brings ample benefits to the costs, the technical properties of concrete as well as to the environment. An experimental study of the effect of RHA blending on workability, strength and durability of high performance fine-grained concrete (HPFGC) is presented. The results show that the addition of RHA to HPFGC improved significantly compressive strength, splitting tensile strength and chloride penetration resistance. Interestingly, the ratio of compressive strength to splitting tensile strength of HPFGC was lower than that of ordinary concrete, especially for the concrete made with 20 % RHA. Compressive strength and splitting tensile strength of HPFGC containing RHA was similar and slightly higher, respectively, than for HPFGC containing SF. Chloride penetration resistance of HPFGC containing 10-15 % RHA was comparable with that of HPFGC containing 10 % SF.

시멘트의 수화특성에 대한 유·무기 복합 나노실리카의 영향 (Influence of Nano Silica Dispersant on Hydration Properties of Cementitious Materials)

  • 강현주;송명신;박종헌;송수재
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.510-515
    • /
    • 2011
  • In this study, as a material used to replace silica fumes for high strength concrete, nano-silica compound with organic functional group for dispersion and with inorganic silica group that can cause a pozzolan reaction is synthesized, These nano silica compound is divided into IC, which is nano size $SiO_2$ with irregularly combined hydroxyl group and carboxyl group, and RC, which is nano size $SiO_2$ with regularly combined hydroxyl group and carboxyl group. The effects of these nano silica compound on the hydration of cement are reviewed. As a result, all of synthesized nano-silica compounds have excellent dispersion on the cement flow, we think that dispersion property is the effect of air entraining by synthesized nano-silica compounds. The result of the microstructure observation showed that the particle size of the synthesized nano-silica is smaller than silica fume and spread evenly among the cement particles. In initial The phenomenon of strength decreasing occurred due to delayed hydration reaction by the synthesized nano-silica with carboxyl(-COOH) and hydroxyl(-OH) functional group.

폐 벤토나이트 분말을 흔입한 모르터의 강도 발현 특성에 관한 실험적 연구 (An Experimental Study on the Strength-Development Properties of Mortar with Discarded Bentonite Powder)

  • 정민수;김효열;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.23.2-29
    • /
    • 2003
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, the quantity of bentonite is increasingly used on construction industry day by day. But, the discarded bentonite that is excessively used at underground excavation works causes various environmental trouble such as soil and water pollution etc. Therefore, this study aims to propose a foundamental report about pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out the strength-development properties of mortar with discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments such as flow test, and compressive strength test on curing age of mortar are excuted. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, the strength-development properties of mortar mixing with discarded Bentonite powder is superior to the situation of $600^{\circ}C$.60min-cooling using of water.

  • PDF

지역별 황토의 화학적 특성 및 강도발현에 관한 연구 (A Study on the Chemical Properties and Strength Development of Regional Hwangto)

  • 황혜주;김정규;양준혁
    • KIEAE Journal
    • /
    • 제6권2호
    • /
    • pp.11-18
    • /
    • 2006
  • In this research, Conducting an engineering properties experiment, this study examined basic properties of regional Hwangto. The results of experiments are as followings. 1) This study confirmed that a result of examining lime order for Hwangto and comparison of stimulants, this study confirmed that 28 day's strength promotion is found in case of calcium hydroxide(Ca(OH)2) and calcium chloride(CaCl2) stimulant. Finally, it is known the fact that lime highly improves the weak strength of Hwangtoh. 2) As XRD analysis for proving the strength manifestation principle of Hwangto by regions, CSH figure and CASH figure appeared in each regional Hwangto in all the strength areas. This result could be appeared through hydraulicity from reaction of alkali stimulant and water, and pozzolan reaction(CSH figure) and $Str{\ddot{a}}tlingite$ reaction(CASH figure) by silica (SiO2) ingredient and calcium hydroxide (Ca(OH)2) among ingredients of clay, and alumina(Al2O3). 3) In result of strength analysis, It is knowned that the Gyeongsangdo Hwangto is stronger than the Jeollado Hwangto in reactivity.

플라이애시 사용 콘크리트의 품질에 미치는 미분시멘트의 영향 (The Effects of Fine Particle Cement on the Quality of Fly Ash Concrete)

  • 이정아;전규남;백대현;박종호;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.113-117
    • /
    • 2009
  • Fly ash (called FA hereafter) that results from thermal power plants is a long-term strength improving substance with reactivity to pozzolan and has been used for long. However, large amount of FA shows many advantages such as reduction of hydratio energy, long-term improvement in strength and economic feasibility and also has difficulties from reduction in initial strength and durability. In a preceding study, fine particle cement was applied to test the effects on initial strength. Therefore in this study, the effects of fine particle cement on the quality of FA concrete were reviewed. The results can be summarized as follows. Liquidity was increased by the most at FC substitution ratio of 15%. Air capacity was reduced according to increasing substitution ratio of FA and FC. Compressive strength showed high strength expression at all ages when FC was substituted at 45%. Synthesizing the above results, appropriate mixing of FC in FA concrete can improve liquidity, reduce unit quantity and show improvement in strength. In particular, mixed use of FC seems effective in improving early quality of concrete.

  • PDF

3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성 (The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature)

  • 장칩도르지;소형석;이제방;소승영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

지하구조물 취약부에 적용한 천연 무기질계 분말형 혼화제의 누수저감효과 (The Leakage Reduction of Natural Inorganic Powder Compound Applying Subsurface Structural Weak Part)

  • 윤성환;서현재;이혜령;박진상;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.19-22
    • /
    • 2011
  • For underground structures that are exposed to environmental conditions, the declination of the durability of concrete occurs easily because of leakages from high hydraulic pressure and the frequent contact of water due to environmental factors. Therefore this study is to confirm that the leakage reduction of natural inorgnic powder compound applying subsurface structural weak part and make the performance improvement of concrete as an objective. The test was done by making the rebar, flat tie, nail and film infiltration and each of its water tank and cylindrical test body then after pouring water to each of the test body, the test observe the change of the water tank surface absorbed condition and leakage of each specimen with respect to time. As a conclusion, the test was observed that this water proofing admixture has better watertightness from the beginning of the setting time(when it hardens), the ettringite and the thaumasite generates a large quantity of hydration products that controls the formation in a large opening and the CSH produced by pozzolan reaction makes a dent at this opening.

  • PDF

혼화재료로서 규조토 분말을 사용한 모르타르의 강도 특성 (Strength Characteristics of Mortar with Diatomite Powder as an Admixture)

  • Choi, Jaejin;Park, Hongtae;Kim, Jaewoo
    • 한국재난정보학회 논문집
    • /
    • 제11권3호
    • /
    • pp.329-336
    • /
    • 2015
  • 혼화재료로 사용한 규조토 분말이 모르타르의 강도에 미치는 영향을 검토하기 위하여 시판되고 있는 건조상태의 비소성제품과 소성제품 각 1종류 및 융제소성제품 2종류 등 모두 4종류의 규조토 분말을 사용한 모르타르의 물성실험을 실시하였다. 규조토 분말을 시멘트 질량으로 10% 범위 내에서 대체 사용하고 물-결합재비를 동일하게 한 모르타르 실험결과로서, 소성제품을 사용한 경우는 그 사용량의 증가에 따라 재령 7일, 28일 및 56일의 전체 시험재령에서 압축강도 및 휨강도가 증가하는 경향을 나타냈다. 그러나 비소성제품은 모르타르의 유동성을 저하시켜 단위수량을 크게 증가시키는 문제점이 있었으며, 융제소성제품은 모르타르의 강도개선효과가 나타나지 않았다.