DOI QR코드

DOI QR Code

A Study on High Performance Fine-Grained Concrete Containing Rice Husk Ash

  • Le, Ha Thanh (F.A. Finger-Institute for Building Materials Engineering, Faculty of Civil Engineering, Bauhaus-University Weimar) ;
  • Nguyen, Sang Thanh (Institute of Construction Engineering, University of Transport and Communications) ;
  • Ludwig, Horst-Michael (F.A. Finger-Institute for Building Materials Engineering, Faculty of Civil Engineering, Bauhaus-University Weimar)
  • Received : 2013.04.17
  • Accepted : 2014.03.04
  • Published : 2014.12.30

Abstract

Rice husk ash (RHA) is classified as a highly reactive pozzolan. It has a very high silica content similar to that of silica fume (SF). Using less-expensive and locally available RHA as a mineral admixture in concrete brings ample benefits to the costs, the technical properties of concrete as well as to the environment. An experimental study of the effect of RHA blending on workability, strength and durability of high performance fine-grained concrete (HPFGC) is presented. The results show that the addition of RHA to HPFGC improved significantly compressive strength, splitting tensile strength and chloride penetration resistance. Interestingly, the ratio of compressive strength to splitting tensile strength of HPFGC was lower than that of ordinary concrete, especially for the concrete made with 20 % RHA. Compressive strength and splitting tensile strength of HPFGC containing RHA was similar and slightly higher, respectively, than for HPFGC containing SF. Chloride penetration resistance of HPFGC containing 10-15 % RHA was comparable with that of HPFGC containing 10 % SF.

Keywords

References

  1. AFNOR. Beton (1995): beton de sable, Paris, France, NFP18-500.
  2. Alonso, C., Andrade, C., Castellote, M., & Castro, P. (2000). Chloride threshold values to depassivate reinforcing bars embedded in a standardized opc mortar. Cement and Concrete Research, 30(7), 1047-1055. https://doi.org/10.1016/S0008-8846(00)00265-9
  3. Armesto, L., Bahillo, A., Veijonen, K., Cabanillas, A., & Otero, J. (2002). Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass and Bioenergy, 23(3), 171-179. https://doi.org/10.1016/S0961-9534(02)00046-6
  4. Bederina, M., Gotteicha, M., Belhadj, B., Dheily, R. M., Khenfer, M. M., & Queneudec, M. (2012). Drying shrinkage studies of wood sand concrete-effect of different wood treatments. Construction and Building Materials, 36, 1066-1075. https://doi.org/10.1016/j.conbuildmat.2012.06.010
  5. Bederina, M., Marmoret, L., Mezreb, K., Khenfer, M. M., Bali, A., & Queneudec, M. (2007). Effect of the addition of wood shavings on thermal conductivity of sand concretes: Experimental study and modelling. Construction and Building Materials, 21(3), 662-668. https://doi.org/10.1016/j.conbuildmat.2005.12.008
  6. Beton de sable, caracteristique et pratiques d'utilisation, Synthese du Projet National de Recherche et Developpement SABLOCRETE. (1994). Presses de l'Ecole National des Ponts et Chaussees, Paris, France.
  7. Bhanja, S., & Sengupta, B. (2005). Influence of silica fume on the tensile strength of concrete. Cement and Concrete Research, 35(4), 743-747. https://doi.org/10.1016/j.cemconres.2004.05.024
  8. Bijen, J. (1996). Benefits of slag and fly ash. Construction and Building Materials, 10(5), 309-314. https://doi.org/10.1016/0950-0618(95)00014-3
  9. Bui, D. D. (2001). Rice husk ash as a mineral admixture for high performance concrete. PhD Thesis, Delft University of Technology, Delft, Netherland.
  10. CEN. (2003). Concrete paving blocks - requirements and test methods: Measurement of abrasion according to the bohme test, Brussel, Belgium, DIN EN 1338.
  11. Chindaprasirt, P., Rukzon, S., & Sirivivatnanon, V. (2008). Resistance to chloride penetration of blended portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Construction and Building Materials, 22(5), 932-938. https://doi.org/10.1016/j.conbuildmat.2006.12.001
  12. De Schutter, G., Bartos, P., Domone, P., & Gibbs, J. (2008). Selfcompacting concrete. Caithness, UK: Whittles Publishing.
  13. FAO. (2012). Rice market monitor, http://reliefweb.int/sites/relief web.int/files/resources/ap88e.pdf.
  14. Feng, Q., Yamamichi, H., Shoya, M., & Sugita, S. (2004). Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment. Cement and Concrete Research, 34(3), 521-526. https://doi.org/10.1016/j.cemconres.2003.09.005
  15. Ganesan, K., Rajagopal, K., & Thangavel, K. (2008). Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Construction and Building Materials, 22(8), 1675-1683. https://doi.org/10.1016/j.conbuildmat.2007.06.011
  16. Horszczaruk, E. (2005). Abrasion resistance of high-strength concrete in hydraulic structures. Wear, 259(1-6), 62-69. https://doi.org/10.1016/j.wear.2005.02.079
  17. Khay, S. E. E., Neji, J., & Loulizi, A. (2010). Shrinkage properties of compacted sand concrete used in pavements. Construction and Building Materials, 24(9), 1790-1795. https://doi.org/10.1016/j.conbuildmat.2010.02.008
  18. Kjellsen, K.-O., Wallevik, O.-H., & Hallgren, M. (1999). On the compressive strength development of high-performance concrete and paste-effect of silica fume. Materials and Structures, 32(1), 63-69. https://doi.org/10.1007/BF02480414
  19. Le, H. T., Rossler, C., Siewert, K., Ludwig, H.-M. (2012). Rice husk ash as a pozzolanic viscosity modifying admixture for self-compacting high performance mortar. In Proceedings of the 18th international conference on building materials, Weimar, Germany. F.A. Finger-Institut fur Baustoffkunde, 0538-0545.
  20. Le, H. T., Siewert, K., Ludwig, H.-M. (2012). Synergistic effects of rice husk ash and fly ash on properties of selfcompacting high performance concrete. In Proceedings of symposium on Ultra high performance concrete and Nanotechnology for High performance construction materials, Kassel, Germany, 187-195.
  21. Mehta, P. K. (1994). Rice husk ash: A unique supplementary cementing material. In Proceedings of Advances in concrete technology, Center for mineral and Energy Technology, Ottawa, Canada, 419-444.
  22. Nazari, A., & Riahi, S. (2011). Splitting tensile strength of concrete using ground granulated blast furnace slag and sio2 nanoparticles as binder. Energy and Buildings, 43(4), 864-872. https://doi.org/10.1016/j.enbuild.2010.12.006
  23. Nguyen, V. T. (2011). Rice husk ash as a mineral admixture for ultra high performance concrete. PhD thesis, Delft, Netherland.
  24. Nguyen, V. T., Ye, G., Breugel, K. V., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra high performance concrete. Construction and Building Materials, 25(4), 2030-2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046
  25. Ollivier, J. P., Maso, J. C., & Bourdette, B. (1995). Interfacial transition zone in concrete. Advanced Cement Based Materials, 2(1), 30-38. https://doi.org/10.1016/1065-7355(95)90037-3
  26. Parra, C., Valcuende, M., & Gomez, F. (2011). Splitting tensile strength and modulus of elasticity of self-compacting concrete. Construction and Building Materials, 25(1), 201-207. https://doi.org/10.1016/j.conbuildmat.2010.06.037
  27. Rodriguez de Sensale, G. (2010). Effect of rice-husk ash on durability of cementitious materials. Cement & Concrete Composites, 32(9), 718-725. https://doi.org/10.1016/j.cemconcomp.2010.07.008
  28. Safiuddin, M., West, J. S., & Soudki, K. A. (2011). Flowing ability of the mortars formulated from self-compacting concretes incorporating rice husk ash. Construction and Building Materials, 25(2), 973-978. https://doi.org/10.1016/j.conbuildmat.2010.06.084
  29. Salas, A., Delvasto, S., De Gutierrez, R. M., & Lange, D. (2009). Comparison of two processes for treating rice husk ash for use in high performance concrete. Cement and Concrete Research, 39(9), 773-778. https://doi.org/10.1016/j.cemconres.2009.05.006
  30. Shetty, M. S. (2003). Concrete technology (theory and practice). New Delhi, India: S Chand & Co Ltd.
  31. Siddique, R., & Khan, I. M. (2011). Supplementary cementing materials. Berlin Heidelberg, Germany: Springer.
  32. Thomas, M. (1996). Chloride thresholds in marine concrete. Cement and Concrete Research, 26(4), 513-519. https://doi.org/10.1016/0008-8846(96)00035-X
  33. Thomas, M. D. A., & Bamforth, P. B. (1999). Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  34. Van, V. -T. -A., Ro ssler, C., Bui, D. -D., & Ludwig, H. -M. (2013). Mesoporous structure and pozzolanic reactivity of rice husk ash in cementitious system. Construction and Building Materials, 43, 208-216. https://doi.org/10.1016/j.conbuildmat.2013.02.004

Cited by

  1. Fresh and hardened properties of green binder concrete containing marble powder and brick powder vol.20, pp.1, 2014, https://doi.org/10.1080/19648189.2016.1246692
  2. Evaluation of the performance of eco-friendly lightweight interlocking concrete paving units incorporating sawdust wastes and laterite vol.3, pp.1, 2014, https://doi.org/10.1080/23311916.2016.1255168
  3. Mechanical Properties and Modeling of Amorphous Metallic Fiber-Reinforced Concrete in Compression vol.10, pp.2, 2014, https://doi.org/10.1007/s40069-016-0144-9
  4. Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights vol.11, pp.2, 2014, https://doi.org/10.1007/s40069-017-0194-7
  5. Evaluation of Pozzolanic Activity for Effective Utilization of Dredged Sea Soil vol.11, pp.4, 2014, https://doi.org/10.1007/s40069-017-0215-6
  6. Mechanical and microstructural properties of recycled reactive powder concrete containing waste glass powder and fly ash at standard curing vol.5, pp.1, 2018, https://doi.org/10.1080/23311916.2018.1464877
  7. The Effect of Utilizing Rice Husk Ash on Some Properties of Concrete - A Review vol.13, pp.2, 2014, https://doi.org/10.12944/cwe.13.2.07
  8. Mechanical and durability performance of sustainable bacteria blended fly ash concrete: an experimental study vol.13, pp.1, 2014, https://doi.org/10.1080/19397038.2019.1644386
  9. Influence of uncontrolled burn rice husk ash on engineering properties of cement-admixed fine-grained soil vol.18, pp.2, 2014, https://doi.org/10.1080/14488353.2020.1757186
  10. An experimental study on the performance of fine-grained concrete incorporating recycled steel spring exposed to acidic conditions vol.23, pp.11, 2020, https://doi.org/10.1177/1369433220915794
  11. Estudio de los efectos de diferentes combinaciones de materiales repelentes de agua y fibras de piassaba (Aphandra natalia) en morteros de cemento = Study of the effects of different combinations of w vol.6, pp.2, 2014, https://doi.org/10.20868/ade.2020.4500
  12. Investigation on the mechanical properties of cement mortar with sustainable materials vol.47, pp.p14, 2021, https://doi.org/10.1016/j.matpr.2021.06.057
  13. Potential of sugarcane bagasse ash as supplementary cementitious material and comparison with currently used rice husk ash vol.273, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2020.121679
  14. Silicate impurities incorporation in calcium aluminate cement concrete: mechanical and microstructural assessment vol.120, pp.2, 2014, https://doi.org/10.1080/17436753.2021.1889755
  15. Evaluation of rheological and durability characteristics of sugarcane bagasse ash and rice husk ash based binary and ternary cementitious system vol.317, pp.None, 2014, https://doi.org/10.1016/j.conbuildmat.2021.125965
  16. Strength and Permeability of No-Fines Concrete Made with Supplementary Cementitious Materials vol.34, pp.1, 2014, https://doi.org/10.1061/(asce)mt.1943-5533.0004037
  17. Effect of rice husk ash on mechanical properties, fracture energy, brittleness and aging of calcium aluminate cement concrete vol.36, pp.None, 2022, https://doi.org/10.1016/j.istruc.2021.11.054