• 제목/요약/키워드: Powertrain

검색결과 283건 처리시간 0.021초

42-volt ISG 차량의 성능 시뮬레이터를 이용한 연비성능 분석 (Analysis of Fuel Economy for a 42-volt ISG Vehicle Using Performance Simulator)

  • 김정민;오경철;이재호;김현수
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper, an operation algorithm and a performance simulator are developed for a 42-volt ISG vehiclewhich consists of 5 kW ISG, 2500cc IC engine, torque converter and 4 speed automatic transmission. Modularapproach using MATLAB Simulink is used to construct a dynamic model of the vehicle powertrain which is obtainedfrom each component such as engine, battery, ISG, torque converter, etc.. An operation strategy for a 42-volt ISG vehicle including the function such as engine idle stop and regenerative braking is proposed. Performance simulator is developed based on the dynamic models of the powertrain. It is found from the simulation results that fuel economy can be improved as much as 6 percent for FTP75 driving cycle mostly owing to the engine idle stop.

다목적 최적화 기법을 이용한 동력장치의 실차 내구시험모드 생성에 관한 연구 (A Study on Endurance Test Mode Generation of Powertrain System Using Multi-Objective Optimization)

  • 이정환;성영화;이병용
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.614-622
    • /
    • 2018
  • Based on army operating road profile, the endurance test of military vehicle aims to reproduce the similar loading conditions with mixture of proving ground tracks. It is so called as endurance test mode and its optimal generation is important to meet high reliability of endurance test. In this paper, proving ground optimization is proposed to achieve a close match to the target profile. Several performance measures such as torque-revolution counts or transmission ratio for the powertrain system can be considered as one of the objective functions. However, the one-side optimal endurance test mode may give the poor solution in the whole system point of view. To incorporate several goals simultaneously, this paper employs multi-objective optimization technique to generate endurance test mode. One of the most widely used method, weighted-sum method is applied here and the case study is discussed.

그린카용 인휠 모터의 냉각 성능에 관한 연구 (A Study on Cooling Performance of In-wheel Motor for Green Car)

  • 정정훈;김성철;홍정표
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.61-67
    • /
    • 2012
  • The in-wheel motor used in green car was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, a outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor under the effects of motor speed and heat generation. In order to check the problem of heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). Also, the thermo-flow characteristics analysis of in-wheel motor for vehicles was performed in consideration of ram air effect. Therefore, we checked the feasibility of the air cooling for the housing geometry having cooling grooves and investigated the cooling performance enhancement.

LPG/CNG Interface Box 제품 Hardware 설계 (LPG/CNG Interface Box Hardware Design)

  • 안정훈;정재민
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.23-29
    • /
    • 2007
  • In Korea, the number of LPG vehicles is increasing continuously because LPG is cheaper than Gasoline. Also in Europe, the CNG fuel is a good solution to meet $CO_2$ regulation. In order to use LPG/CNG fuel, new EMS ECU must be developed for every type of vehicles and it requires huge development cost. In order to reduce development cost and time, SIEMENS VDO has developed an Interface Box. It supports EMS ECU in the car and manages LPG/CNG fuel injection system. Basically the Interface box can be used with any kind of EMS ECU. The Interface Box controls LPG/CNG injector through the injection command of gasoline EMS ECU. It calculates required amount of based on the fuel temperature and pressure and sends feedback signal to ECU for fuel correction. Also, it controls LPG/CNG specific actuator such a Shut off valves and LPG switch inputs.

토크 컨버터의 댐퍼 진동 특성 (Vibration Analysis of Damper System in Torque Converter)

  • 박태준;김명식;장재덕;주인식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.305-310
    • /
    • 2007
  • This paper presents a damper system design in torque converter to minimize the vibration in powertrain of automatic transmission vehicle. The lock-up clutch in torque converter makes engine and transmission connected directly. When the lock-up clutch is engaged the torque fluctuation of engine is attenuated by the damper system. This function decides the vehicle power-train dynamic characteristics. At first, the dynamic hysteresis effect with any self and surface to surface contact problems of the damper springs in the damper system for torque converter is analyzed by using FEM. It is shown that these simulation results have a good design reference to energy dissipation operating by damper system in torque converter. And, to calculate dynamic characteristics, the vehicle model is structured by using $AMESim^{(R)}$?? that is a common use program. The vehicle model shows the frequency response of vehicle by changing the stiffness of damper spring, and these results lead the most suitable stiffness of spring. Also, new damper system is analyzed resonance frequency variation and is compared with prior damper.

  • PDF

진동 파워흐름 측정을 통한 SUV용 엔진 마운트의 에너지 전달 기여도 분석에 관한 연구 (A Study on the Transmitted Energy Contribution Analysis of SUV Engine Mount by Vibration Power Flow Measurement)

  • 김수곤;이상권;김성종
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.400-410
    • /
    • 2008
  • Reduction of structure-borne noise in the compartment of a car is an important task in automotive engineering. Many methods which analyze noise transfer path have been generally used for structure-borne noise. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation for each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow measurement has been used for a simple isolation system or a laboratory based isolation system. This paper identifies the transfer path of booming noise in a SUV. The powertrain used for test has a in-line 4cylinder engine and 5-shift auto-transmission. This powertrain is transversely supported by four isolators. We calculated the energy flow throughout four isolator by the measurement of power flow and the contribution of energy flow at each isolator.

엔진장착조건에 따른 4WD 자동차의 진동저감에 대한 실험적 연구 (An Experimental Study on the Vibration Reduction of the 4WD Vehicle by the Engine Mounting Conditions)

  • 사종성;김광식
    • 한국자동차공학회논문집
    • /
    • 제2권2호
    • /
    • pp.24-32
    • /
    • 1994
  • This paper is the experimental study on the vibration reduction of the 4WD vehicle through the change of the engine mounting conditions.(4 stroke diesel engine) The engine mounting conditions are changed to reduce the transmitted vibrations of the engine to the frame at the idle speed. Under the assumption that the Powertrain(Engine Transmission and Transfer Case) is a rigid body, the inertia properties of the powertrain are obtained by experimental modal analysis. And then the changed mounting conditions are studied by the decoupled vibration theory and analytical model of six degree of freedom. Though the mounting conditions are changed to improve the vibration isolation at idle speed, the vibration and the interior noise of the vehicle are reduced significantly at driving speed as well as idle speed. From the indirect endurance test of the front engine mounts, the changed mounting conditions are desirable to endurance as well as vibration reduction of the 4WD vehicle.

  • PDF

클러치 댐퍼용 원심 진자 흡진기의 비틀림 진동 절연 성능 평가 (Torsional Vibration Isolation Performance Evaluation of Centrifugal Pendulum Absorbers for Clutch Dampers)

  • 송성영;신순철;김기우
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.436-442
    • /
    • 2016
  • This paper presents the torsional vibration isolation performance evaluation of a centrifugal pendulum absorbers (CPAs) that has a continuously varying resonance frequencies proportional to engine firing (excitation) order. CPAs are commonly used to suppress torsional vibrations in rotating machinery and internal combustion engines. In this study, they are employed on the current spring type torsional damper inside a torque converter of automotive vehicle. To evaluate the effectiveness of designed resonance tuning order, the torsional vibration transmissibility based on torque measurements with respect to different engine firing orders is experimentally measured with a lower-inertia dynamometer. The torsional vibration transmissibility with respect to different frequencies with engine order of 2 is also evaluated. It has been demonstrated that the significant vibration reduction over operational frequency range of interest can be achieved by attaching simple pendulums. Future research direction includes the study on theoretical analysis, improved design of pendulum etc.

모터링 내구시험을 상사한 비정상 온도이력을 받고 있는 엔진 터보차져의 열적 거동해석 (Thermal Structural Analysis of the Engine Turbocharger under the Transient Temperature History Corresponding to the Motoring Fatigue Test)

  • 최복록;방인완;장훈
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.126-132
    • /
    • 2011
  • Fatigue cracks of the turbocharger are often observed for high performance engines under thermal shock tests. Maximum exhaust gas temperature of recently developed gasoline engines could reach approximately $950^{\circ}C$. It's very important to estimate transient temperature histories during thermal shock cycles to predict the stress and the fatigue life of the turbocharger. With these temperature profiles, temperature-dependent material properties and boundary conditions, we could identify critical locations by the application of finite element simulation technologies. In this paper, we applied the reliable analysis approach to the actual turbocharger to predict the weak locations due to the repetitions of plastic strains and compared the results with the crack locations under physical engine test.

인휠 모터의 냉각 구조 개선에 관한 연구 (A Study on the Enhancement of the Cooling Structure for In-wheel Motor)

  • 김대건;김성철
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.36-42
    • /
    • 2013
  • Recently, the automobile of the future will be able to substitute an electric vehicle for an internal combustion engine, so the following research is actively in the process of advancing. A traction motor is one of the core parts which compose the electric vehicle. Especially, it is difficult to connect cooling water piping to an in-wheel motor because the in-wheel motor is located within the wheel structure. This structure has disadvantage for closed type and air cooling, so the cooling design of motor housing and internal in-wheel motor is important. In this study, thermo-flow analysis of the in-wheel motor for vehicles was performed in consideration of ram air effect. In order to improve cooling efficiency of the motor, we variously changed geometries of housing and internal shape. As a result, we found that the cooling efficiency was most excellent, in case the cooling groove direction was same with air flow direction and arranged densely. Furthermore, we investigated the cooling performance enhancement with respect to variable geometries of internal in-wheel motor.