• Title/Summary/Keyword: Power-off

Search Result 2,763, Processing Time 0.037 seconds

Introduction of Off-Gas Power Plant and Localization Development of Auxiliary Equipment (부생복합발전 소개와 주요설비 국산화를 위한 연구)

  • Ko, Minseok;Kim, Dohyung;Lee, Dongsu;Lee, Seong-geun
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.127-128
    • /
    • 2013
  • Off-gas power plant is a renewable energy power plant which generate electrical energy using the low calorie FOG and BFG as main fuel. This combined cycle power plant is comprised of gas turbines, gas compressors, steam turbines, generators, and auxiliary equipment such as gas mixer, mixing tank, and gas cooler. In this paper, a off-gas power plant and development of its several equipment using CFD are introduced.

  • PDF

Evaluation of 0ff-gas Characteristics in Vitrification Process of ion-Exchange Resin

  • Park, S. C.;Kim, H. S.;K. H. Yang;C. H. Yun;T. W. Hwang;S. W. Shin
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.83-92
    • /
    • 2001
  • The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9Nm$^3$/h at the burning rate of 40kg/h. And the composition of off-gas was avaluated as $CO_2$(41.4%), steam(40.0%), $O_2$(13.3%), NO(3.6%), and SO$_2$(1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3Nm$^3$/h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin.

  • PDF

Improvement of extinction ratio of amplified pulses by incorporating a nonlinear optical loop mirror (EDFA로 증폭된 고출력 펄스 신호의 소광비 향상)

  • Kim, Byung-Jun;Choi, Hyun-Beom;Lee, Han-Hyub;Lee, Dong-Han;Kim, Dae-Yun;Kwon, Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.189-193
    • /
    • 2003
  • A two-stage erbium-doped fiber amplifier (EDFA) with a band pass filter is used to get optical pulses of high peak value. The pulse signal has a 32 ㏈ extinction ratio, 125 W peak power and 79 ㎽ pulse off power. A nonlinear optical loop mirror (NOLM) is used to lower the pulse off power so as to increase the extinction ratio. The pulse signal after the NOLM has a 50.4 ㏈ extinction ratio, 35 W peak power and 0.3 ㎽ pulse off power.

A Design of High-speed Power-off Circuit and Analysis (고속 전원차단 회로 설계 제작 및 측정)

  • Jeong, Sang-Hun;Lee, Nam-Ho;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.490-494
    • /
    • 2014
  • In this paper, a design of high-speed power-off circuit and analysis. The incidence of high-dose transient radiation into the silicon-based semiconductor element induces the photocurrent due to the creation of electron-hole pairs, which causes the upset phenomenon of active elements or triggers the parasitic thyristor in the element, resulting in latch-up. High speed power-off circuit was designed to prevent burn-out of electronic device caused by Latch-up. The proposed high speed power-off circuit was configured with the darlington transistor and photocoupler so that the power was interrupted and recovered without the need for an additional circuit, in order to improve the existing problem of SCR off when using the thyristor. The discharge speed of the high speed power interruption circuit was measured to be 19 ${\mu}s$ with 10 ${\mu}F$ and 500 ${\Omega}$ load, which was 98% shorter than before (12.8 ms).

Off-time Control Method for High Power Density AC/DC Adapter (고전력밀도 AC/DC Adapter를 위한 off-time 제어법)

  • Kang, Shin-Ho;Jang, Jun-Ho;Hong, Sung-Soo;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.510-516
    • /
    • 2007
  • The proposed method offers an improved control method for high power density AC/DC adapter by using more energy efficient electrical equipments. Power factor correction (PFC) topology is based on boost topology with boundary conduction mode (BCM). DC/DC topology is based on half-bridge topology with fixed 50% duty and newly introduced off-time control method, which helps to reduce size of the semiconductor and the magnetic devices. Test results with 85W AC/DC adapter (18.5V/4.6A) design show that the measured efficiency is 90% with power density of $36W/in^3$. It also shows low no load power consumption of about 0.5W.

Tail current and its effect on turn-off performance of power GTO thyristor (GTO의 턴-오프 과도전류와 과도전류가 스위칭에 미치는 영향)

  • Zhang, Chang-Il;Li, Chong;Ji, Ling-Yun;Min, Won-Gi;Kim, Sang-Cheol;Park, Jong-Mun;Kim, Eun-Dong;Kim, Nam-Kyun
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.417-420
    • /
    • 1998
  • In this paper the formation mechanism of tail current is analyzed and its effect on GTO turn-off performance is given. The conclusion is that the large tail current will considerably increase the turn-off loss $E_{off}$ and cause the re-triggering during GTO's off-switching, therefore the best design criterion is that the tail current of power GTO must be as low as possible.w as possible.

  • PDF

Dynamic Shutdown of Server Power Mode Control for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 서버 전원 모드 제어에서의 동적 종료)

  • Kim, Hoyeon;Ham, Chihwan;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.7
    • /
    • pp.283-292
    • /
    • 2013
  • In order to ensure high performance, all the servers in an existing server cluster are always On regardless of number of real-time requests. They ensure QoS, but waste server power if some of them are idle. To save energy consumed by servers, the server power mode control was developed by shutdowning a server when a server is not needed. There are two types of server power mode control depending on when a server is actually turned off if the server is selected to be off: static or dynamic. In a static mode, the server power is actually turned off after a fixed time delay from the time of the server selection. In a dynamic mode, server power is actually turned off if all the services served in the server are done. This corresponds to a turn off after a variable time delay. The static mdoe has disadvantages. It takes much time to find an optimal shutdown time manually through repeated experiments. In this paper, we propose a dynamic shutdown method to overcome the disadvantages of static shutdown. The proposed method allows to guarantee user QoS with good power-saving because it automatically approaches an optimal shutdown time. We performed experiments using 30 PCs cluster. Experimental results show that the proposed dynamic shutdown method is almost same as the best static shutdown in terms of power saving, but better than the best static shutdown in terms of QoS.

Wave energy converter by using relative heave motion between buoy and inner dynamic system

  • Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2012
  • Power-take-off through inner dynamic system inside a floating buoy is suggested. The power take-off system is characterized by mass, stiffness, and damping and generates power through the relative heave motion between the buoy and inner mass (magnet or amateur). A systematic hydrodynamic theory is developed for the suggested WEC and the developed theory is illustrated by a case study. A vertical truncated cylinder is selected as a buoy and the optimal condition of the inner dynamic system for maximum PTO (power take off) through double resonance for the given wave condition is systematically investigated. Through the case study, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC theory. However, the band-width of high performance region is not necessarily the greatest at the optimal (maximum-power-take-off) condition, so it has to be taken into consideration in the actual design of the WEC.

SSR (Simple Sector Remapper) the fault tolerant FTL algorithm for NAND flash memory

  • Lee, Gui-Young;Kim, Bumsoo;Kim, Shin-han;Byungsoo Jung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.932-935
    • /
    • 2002
  • In this paper, we introduce new FTL(Flash Translation Layer) driver algorithm that tolerate the power off errors. FTL driver is the software that provide the block device interface to the upper layer software such as file systems or application programs that using the flash memory as a block device interfaced storage. Usually, the flash memory is used as the storage devices of the mobile system due to its low power consumption and small form factor. In mobile system, the state of the power supplement is not stable, because it using the small sized battery that has limited capacity. So, a sudden power off failure can be occurred when we read or write the data on the flash memory. During the write operation, power off failure may introduce the incomplete write operation. Incomplete write operation denotes the inconsistency of the data in flash memory. To provide the stable storage facility with flash memory in mobile system, FTL should provide the fault tolerance against the power off failure. SSR (Simple Sector Remapper) is a fault tolerant FTL driver that provides block device interface and also provides tolerance against power off errors.

  • PDF

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.