DOI QR코드

DOI QR Code

Improvement of extinction ratio of amplified pulses by incorporating a nonlinear optical loop mirror

EDFA로 증폭된 고출력 펄스 신호의 소광비 향상

  • 김병준 (충남대학교 자연과학대학 물리학과 광전자 실험실) ;
  • 최현범 (충남대학교 자연과학대학 물리학과 광전자 실험실) ;
  • 이한협 (충남대학교 자연과학대학 물리학과 광전자 실험실) ;
  • 이동한 (충남대학교 자연과학대학 물리학과 광전자 실험실) ;
  • 김대연 (국방과학 연구소 1부9팀) ;
  • 권일범 (한국표준과학연구원 산업측정표준부)
  • Published : 2003.04.01

Abstract

A two-stage erbium-doped fiber amplifier (EDFA) with a band pass filter is used to get optical pulses of high peak value. The pulse signal has a 32 ㏈ extinction ratio, 125 W peak power and 79 ㎽ pulse off power. A nonlinear optical loop mirror (NOLM) is used to lower the pulse off power so as to increase the extinction ratio. The pulse signal after the NOLM has a 50.4 ㏈ extinction ratio, 35 W peak power and 0.3 ㎽ pulse off power.

높은 peak 값의 광 펄스 신호를 얻기 위하여 대역통과 필터(band pass filter)를 사용한 2단 구조 erbium-doped fiber amplifier (EDFA)를 구성하여 125 W peak 값과 32 ㏈ 소광비(extinction ratio)를 갖는 펄스 신호를 얻었다. 이때 pulse off power는 79 ㎽이다. pulse off power를 낮추고 소광비를 높이기 위하여 nonlinear optical loop mirror(NOLM)을 사용하였다. NOLM 을 통과한 펄스 신호는 35 W peak 값과 0.3 ㎽ pulse off power, 50.4 ㏈ 소광비를 갖는다.

Keywords

References

  1. Y. Sato and K.I. Aoyama, 'Optical time domain reflectometry in optical transmission lines containing in-line Erdoped fiber amplifiers' Lightwave Technol., vol. 10, no. 1, pp. 78 -83, 1992 https://doi.org/10.1109/50.108740
  2. 권일범, 최만용, 유재왕, 백세종, '광섬유 BorDA 센서의 개발' 한국광학회지, 제 12권 4호, pp. 294-298, 2001
  3. T. Horiguchi, T. Kurashima, and M. Tateda, 'A technique to measure distributed strain in optical fiber,' IEEE Photon. Technol. Lett. vol. 2, pp. 353-354, 1990 https://doi.org/10.1109/68.54703
  4. M. Nikles, L. Thevenaz, and P. A. Robert, 'Brillouin gain spectrum characterization in single-mode optical fibers,' Lightwave Technol., vol. 15, no. 10, pp. 1842-1851, 1997 https://doi.org/10.1109/50.633570
  5. H. Takara, A. Takada, and M. Saruwatari, 'A highly efficient two-stage $Er{3+}$-doped optical fiber amplifier employing an optical gate to effectively reduce ASE' IEEE Photon. Technal Lett., vol. 4, pp. 241-243, 1992 https://doi.org/10.1109/68.122379
  6. B. Desthieux, R. I. Laming, and D.N. Payne, '111 kW (0.5mJ) pulse amplification at 1.5 ${\mu}m$ using a gated cascade of three erbium-doped fiber amplifiers' Appl. Phys. Lett., vol. 63, no. 5, pp. 586-588, 1993 https://doi.org/10.1063/1.109957
  7. N. J. Doran and D. Wood, 'Nonlinear-optical loop mirror,' Opt. Lett., vol. 13, pp. 56-58, 1988 https://doi.org/10.1364/OL.13.000056
  8. I.N. Duling,III, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, 'Operation of a nonlinear loop mirror in a laser cavity,' IEEE. J Quantum Electron. vol. 30, no. 1, pp. 194-199, 1994 https://doi.org/10.1109/3.272080
  9. W. Y. Oh, B. Y. Kim, and H. W. Lee, 'Passive mode locking of a Neodymium-doped fiber laser with a nonlinear optical loop mirror,' IEEE. J Quantum Electron. vol. 32, no. 2, pp. 333-339, 1996 https://doi.org/10.1109/3.481881
  10. K. Smith, N. J. Dora, and P. G. J. Wigley, 'Pulse shaping, compression, and pedestal suppression employing a nonlinearoptical loop mirror,' Opt. Lett. vol. 15, pp. 1294-1296, 1990 https://doi.org/10.1364/OL.15.001294
  11. E. Yamada and M. Nakazawa, 'Reduction of amplified spontaneous emission from a transmitted soliton signal using a nonlinear amplifying loop mirror and a nonlinear optical loop mirror,' IEEE. J. Quantum Electron. vol. 30, no. 8, pp. 1842-1850, 1994 https://doi.org/10.1109/3.301648