• Title/Summary/Keyword: Power system stability

Search Result 2,035, Processing Time 0.027 seconds

Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System

  • Kumkratug, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.672-680
    • /
    • 2012
  • This paper proposes the control strategy of the shunt Flexible AC Transmission System (FACTS) devices to improve transient stability in multimachine power system. The multimachine power system has high nonlinear response after severe disturbance. The concept of Lyapunov energy function is applied to derive nonlinear control strategy and it was found that the time derivative of line voltage is not only can apply to control the shunt FACTS devices in multimachine system but also is locally measurable signal. The fuzzy logic control is also applied to overcome the uncertainty of various disturbances in multimachine power system. This paper presents the method of investigating the effect of the shunt FACTS devices on transient stability improvement. The proposed control strategy and the method of simulation are tested on the new England power system. It was found that the shunt FACTS devices based on the proposed nonlinear control strategy can improve transient stability of multimachine power system.

A Study on Assesment Algorithm for the Economical Generation Capability considering Voltage Stability (전압안정도를 고려한 경제적인 발전가능전력의 산정알고리즘에 관한 연구)

  • Moon, Hyun-Ho;Lee, Jong-Joo;Yoon, Chang-Dae;Ahn, Pius;Choi, Sang-Yule;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.536-543
    • /
    • 2006
  • This paper uses Monte Carlo technique, which is one of probabilistic methods of estimating the economical quantity of electric power generation in consideration of voltage stability in the aspect of power generation companies. In the power exchange system in Korea, when power generation companies participate in tenders for power generation capacity at the power exchange, they need to determine their power supply capacity considering the stability of electric power system. Thus, we purposed to propose an algorithm for estimating economical power generation capacity in theaspect of power generation companies, through which we can estimate the margin for voltage stability through P-V curve analysis by capacity according to the change of power generation capacity in a simulated system and to conduct Monte Carlo simulation in consideration of the margin

Power System Nonlinearity Modal Interaction by the Normal Forms of Vector Fields

  • Zhang, Jing;Wen, J.Y.;Cheng, S.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Because of the robust nonlinear characteristics appearing in today's modern power system, a strong interaction exists between the angle stability and the voltage stability, which were conventionally studied insularly. However, as the power system is a complex unified system, angle instability always happens in conjunction with voltage instability. The authors propose a novel method to analyze this type of stability problem. In the proposed method, the theory of normal forms of vector fields is utilized to treat the auxiliary dynamic system. By use of this method, the interaction between response modes caused by the nonlinearity of the power system can be analyzed. Consequently, the eigenvalue analysis method is extended to cope with performance analysis of the power system with heavy nonlinearity. The effectiveness of the proposed methodology is verified on a 3-bus power system.

A Novel SIME Configuration Scheme Correlating Generator Tripping for Transient Stability Assessment

  • Oh, Seung-Chan;Lee, Hwan-Ik;Lee, Yun-Hwan;Lee, Byong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1798-1806
    • /
    • 2018
  • When a contingency occurs in a large transmission route in a power system, it can generate various instabilities that may lead to a power system blackout. In particular, transient instability in a power system needs to be immediately addressed, and preventive measures should be in place prior to fault occurrence. Measures to achieve transient stability include system reinforcement, power generation restriction, and generator tripping. Because the interpretation of transient stability is a time domain simulation, it is difficult to determine the efficacy of proposed countermeasures using only simple simulation results. Therefore, several methods to quantify transient stability have been introduced. Among them, the single machine equivalent (SIME) method based on the equal area criterion (EAC) can quantify the degree of instability by calculating the residual acceleration energy of a generator. However, method for generator tripping effect evaluation does not have been established. In this study, we propose a method to evaluate the effect of generator tripping on transient stability that is based on the SIME method. For this purpose, the measures that reflect generator tripping in the SIME calculation are reviewed. Simulation results obtained by applying the proposed method to the IEEE 39-bus system and KEPCO system are then presented.

Enhancement of Power System Transient Stability and Power Quality Using a Novel Solid-state Fault Current Limiter

  • Fereidouni, A.R.;Vahidi, B.;Mehr, T. Hoseini;Doiran, M. Garmroodi
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.474-483
    • /
    • 2011
  • Solid-state fault current limiters (SSFCL) in power systems are alternative devices to limit prospective short circuit currents from reaching lower levels. Fault current limiters (FCL) can be classified into two categories: R-type (resistive) FCLs and L-type (inductive) FCLs. L-type FCL uses an inductor to limit fault level and is more efficient in suppressing voltage drop during a fault. In contrast, R-type FCL is constructed with a resistance and is more effective in consuming the acceleration energy of generators during a fault. Both functions enhance the transient stability of the power system. In the present paper, a novel SSFCL is proposed to enhance power system transient stability and power quality. The proposed SSFCL uses both functions of an L-type and R-type FCL. SSFCL consists of four diodes, one self-turn-off IGCT, a current-limiting by-pass inductor (L), and a variable resistance parallel with an inductor for improvement of power system stability and prevention of over-voltage across SSFCL. The main advantages of the proposed SSFCL are the simplicity of its structure and control, low steady-state impedance, fast response, and the existence of R-type and Ltype impedances during the fault, all of which improve power system stability and power quality. Simulations are accomplished in PSCAD/EMTDC.

The Development of Dual Structured Power Management System (이중화 구조를 가진 변전소자동화시스템의 개발)

  • Woo, Chun-Hee;Lee, Bo-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.275-288
    • /
    • 2010
  • In order to improve the quality of electricity in large scale power systems, stability of power system has to be achieved. This can be done by the means of preventative diagnosis of power equipments and protection, monitoring and control of the power system. Since the recent adoption of digital controllers, an improvement in stability was observed; in particular, IED, which contained self-diagnostic abilities such as fault tolerance, allowed for automatic recovery via redundancy or switching-over functions should there be faults with the equipments. Furthermore, communication lines have been hugely simplified, thus adding to the improvement in stability significantly. Taking these error reports and forecasting emergency reports and by effectively responding to them in the overiding controlling systems, high levels of system stability can be obtained. Power Management System that is being applied to automated power sub-stations, takes the IEC61850 international standard as its specification. In this paper, additional research into achieving stability of already developed PMS system and also the stability of the overall system was carried out, and the results of development of communication servers, which play a pivotal role in connecting systems, are stated.

Optimal Design Considerations of a Bus Converter for On-Board Distributed Power Systems

  • Abe, Seiya;Hirokawa, Masahiko;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.447-455
    • /
    • 2009
  • The power supply systems, which require low-voltage / high-current output has been changing from the conventional centralized power system to a distributed power system. The distributed power system consists of a bus converter and POL. The most important factor is the system stability in bus architecture design. The overlap between the output impedance of a bus converter input impedance of POL causes system instability and has been an actual problem. By increasing the bus capacitor, the system stability can be easily improved. However, due to limited space on the system board, the increasing of bus capacitors is impractical. An urgent solution of this issue is strongly desired. This paper presents the output impedance design for on-board distributed power system by means of three control schemes of a bus converter. The output impedance peak of the bus converter and the input impedance of the POL are analyzed and then conformed experimentally for stability criterion. Furthermore, the design process of each control schemes for system stability is proposed.

Applications of System Loss Sensitivity Index to Power Systems (손실감도지표의 전력계통 적용)

  • Lee, Sang-Jung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.2
    • /
    • pp.56-61
    • /
    • 2000
  • In the paper, the system loss sensitivity index that implies the incremental system loss with respect to the change of bus power is derived using optimization technique. The index λ reaches $\infty$ at critical loading point and can be applied to actual power systems for following purposes. 1) Evaluation of system voltage stability 2)Optimal investment of reactive power focused on minimizing system loss and maximizing system voltage stability 3)Optimal re-location of reactive power focused on minimizing system loss and maximizing system voltage stability 4)Optimal load shedding in case of severe system contingency focused on minimizing system loss and maximizing system voltage stability. Case studies for each application have proved their effectiveness.

  • PDF

Generalized Stability Criterion for Multi-module Distributed DC System

  • Liu, Fangcheng;Liu, Jinjun;Zhang, Haodong;Xue, Danhong
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.143-155
    • /
    • 2014
  • The stability issues of a multi-module distributed DC power system without current-sharing loop are analyzed in this study. The physical understanding of the terminal characteristics of each sub-module is focused on. All the modules are divided into two groups based on the different terminal property types, namely, impedance (Z) and admittance (Y) types. The equivalent circuits of each group are established to analyze the stability issues, and the mathematical equations of the equivalent circuits are derived. A generalized criterion for multi-module distributed systems is proposed based on the stability criterion in a cascade system. The proposed criterion is independent of the power flow direction.

Operation Strategy of Cheju AC Network Included Multi-Infeed HVDC System

  • Kim, Chan-Ki;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.393-401
    • /
    • 2013
  • This paper deals with the operation strategy of the Cheju AC network included MIHVDC system (Multi-Infeed HVDC system). In case that where several HVDC systems are located in the vicinity of each other, there are interactions between the different HVDC systems in such network configurations. The interactions which could be generated in multi-infeed HVDC are voltage stability, power stability and inertia stability, to analyze such systems in a systematic way to ensure that there are no risks of adverse interactions is very important. The developed method until now to analyze MIHVDC interaction is extended from MAP(Maximum Available Power) method for analyzing the power stability of the single-infeed HVDC system, this method is to solve the eigenstructure using the identified factors influencing the interactions. Finally, the algorithms which are introduced in this paper, to determine the operation strategy are applied to Cheju island network which is supplied by two HVDCs.