• Title/Summary/Keyword: Power sharing control

Search Result 259, Processing Time 0.039 seconds

Analysis and Control of a Modular MV-to-LV Rectifier based on a Cascaded Multilevel Converter

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Khakbazan-Fard, Mahboubeh;Schanen, Jean-Luc
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.133-145
    • /
    • 2009
  • In this paper a modular high performance MV-to-LV rectifier based on a cascaded H-bridge rectifier is presented. The proposed rectifier can directly connect to the medium voltage levels and provide a low-voltage and highly-stable DC interface with the consumer applications. The input stage eliminates the necessity for heavy and bulky step-down transformers. It corrects the input power factor and maintains the voltage balance among the individual DC buses. The second stage includes the high frequency parallel-output DC/DC converters which prepares the galvanic isolation, regulates the output voltage, and attenuates the low frequency voltage ripple ($2f_{line}$) generated by the first stage. The parallel-output converters can work in interleaving mode and the active load-current sharing technique is utilized to balance the load power among them. The detailed analysis for modeling and control of the proposed structure is presented. The validity and performance of the proposed topology is verified by simulation and experimental results.

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

Robust Power Control for Cognitive Radio in Spectrum Underlay Networks

  • Zhao, Nan;Sun, Hongjian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1214-1229
    • /
    • 2011
  • Power control is a key technique in spectrum underlay cognitive network to guarantee the interference temperature limit of the primary users (PUs) and the quality of service of the secondary users (SUs). In this paper, a robust power control scheme via link gain pricing with $H_{\infty}$ estimator is proposed. The scheme guarantees the interference temperature of the PUs through operating in the network-centric manner, and keeps the fairness between the SUs through link gain pricing. Furthermore, the $H_{\infty}$ filter is also used in the proposed scheme to estimate the channel variation, and thus the power control scheme is robust to the severe channel fading. Plenty of simulations are taken, and prove its superior robust performance against the channel fading, and its effectiveness in guaranteeing the interference temperature limit of the PUs.

A Novel Topology Structure and Control Method of High-Voltage Converter for High-Input-Voltage Applications

  • Song, Chun-Wei;Zhao, Rong-Xiang;Zhang, Hao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • In this paper, a three-phase high-voltage converter (HVC), in which the main structure of each phase is composed of a cascaded PWM rectifier (CPR) and cascaded inverter (CI), is studied. A high-voltage grid is the input of the HVC. In order to ensure proper operation of the HVC, the control method should achieve output voltage sharing (OVS) among the rectifiers in the CPR, OVS among the inverters in the CI, and high power factor. Master-slave direct-current control (MDCC) is used to control the CPR. The ability of the control system to prevent interference is strong when using MDCC. The CI is controlled by three-loop control, which is composed of an outer common-output-voltage loop, inner current loops and voltage sharing loops. Simulation results show low total harmonic distortion (THD) in the HVC input currents and good OVS in both the CPR and CI.

Design of Parallel-Operated SEPIC Converters Using Coupled Inductor for Load-Sharing

  • Subramanian, Venkatanarayanan;Manimaran, Saravanan
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.327-337
    • /
    • 2015
  • This study discusses the design of a parallel-operated DC-DC single-ended primary-inductor converter (SEPIC) for low-voltage application and current sharing with a constant output voltage. A coupled inductor is used for parallel-connected SEPIC topology. Generally, two separate inductors require different ripple currents, but a coupled inductor has the advantage of using the same ripple current. Furthermore, tightly coupled inductors require only half of the ripple current that separate inductors use. In this proposed work, tightly coupled inductors are used. These produce an output that is more efficient than that from separate inductors. Two SEPICs are also connected in parallel using the coupled inductors with a single common controller. An analog control circuit is designed to generate pulse width modulation (PWM) signals and to fulfill the closed-loop control function. A stable output current-sharing strategy is proposed in this system. An experimental setup is developed for a 18.5 V, 60 W parallel SEPIC (PSEPIC) converter, and the results are verified. Results indicate that the PSEPIC provides good response for the variation of input voltage and sudden change in load.

Parallel Operation of Three-Phase Bi-Directional Isolated Interleaved DC-DC Converters for The Battery Charge/Discharge System (배터리 충·방전기 시스템에 적용되는 3상 양방향 절연형 인터리브드 DC-DC 컨버터의 병렬운전)

  • Jo, Hyunsik;Lee, Jaedo;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Recently, parallel operation of dc-dc converters has been widely used in distributed power systems. In this paper, a control method to achieve parallel operation of three-phase bi-directional isolated interleaved dc-dc converters is discussed for the battery charging and discharging system which consists of the 32 battery charger/dischargers and two three-phase bi-directional isolated interleaved dc-dc converters. In the boost mode, the battery energy is delivered to the grid, whereas the grid energy is transferred to the battery in the buck mode operation. The average current sharing control method is employed to obtain an equal conducting of each phase current in the three-phase dc-dc converter. By using the proposed method, the imbalance factor is gratefully reduced from 8 percent to 1 percent. Two 2.5kW three-phase bi-directional dc-dc converter prototype have been built and the proposed method has been verified through experiments.

A Method to Determine the Droop Constant of DGs Considering the Configuration and Active Power Control Mode (분산전원의 구성 및 출력 제어 방법에 따른 Droop 계수 설정 방법)

  • Ahn, Seon-Ju;Park, Jin-Woo;Chung, Il-Yop;Moon, Seung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1954-1961
    • /
    • 2008
  • Microgrid usually consists of a cluster of distributed generators(DGs), energy storage systems and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents detailed descriptions of two different options for controlling the active power of DGs in the microgrid. One is regulating the power injected by the unit to a desired amount(Unit output power control) and the other is to regulate the flow of active power in the feeder where the unit is installed to a constant(Feeder flow control). Frequency-droop characteristics are used to achieve good active power sharing when the microgrid operates in the islanded mode. The change in the frequency and the active power output of DGs are investigated according to the control mode and the configuration of DGs when the microgrid is disconnected from the main grid. From the analysis, this paper proposes a method to determine the droop constant of DGs operating in the feeder flow control mode. Simulation results using the PSCAD/EMTDC are presented to validate the approach, which shows good performance as opposed to the conventional one.

A Framework of Rate Control and Power Allocation in Multipath Lossy Wireless Networks

  • Radwan, Amr;Kim, Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1404-1414
    • /
    • 2016
  • Cross-layer design is a concept, which captures the dependencies and interactions and enables information sharing among layers in order to improve the network performance and security. There are two key challenges in wireless networks, lossy features of links and power assumption of network nodes. Cross-layer design of congestion control and power allocation in wireless lossy networks has been studied in the existing literature; however, there has been no contribution proposed in the literature that exploits the path diversity. In this paper, we are motivated to develop a cross-layer design of congestion control and power allocation, which takes into account lossy features of wireless links and transmission powers of network nodes and can be implemented in a distributed manner. Numerical simulation is conducted to illustrate the performance of our proposed algorithm and the comparison with current alternative approaches.

A Study on the Novel Time Sharing Type Current Fad High Frequency Resonant Inverter (새로운 시분할 방식 전류형 고주파 인버터에 관한 연구)

  • Kim H.J.;Won J.S.;Kang J.W.;Cho G.P.;Oh S.H.;Min B.J.;Jung D.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.27-30
    • /
    • 2003
  • This paper describes two novel current fed high frequency resonant inverter can be used as the power supp]y for wax-sealing. This two topology can be obtained higher output frequency than switching frequency by composing modified unit inverter based on conventional half-bridge serial resonant inverter in parallel with input power source. also, By using time-sharing gate control method, this proposed inverter can not only realize the output control of dependence irrespective of the switching frequency using phase-shift but also reduce switching loss because it has ZVS function. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

A study on Characteristics analysis of time sharing type high frequency inverter consisting of half-bridge serial resonant inverter (Half-Bridge형 시분할방식 고주파 공진 인버터의 특성해석에 관한 연구)

  • Cho G. P.;Shin G. H.;Won J. S.;Kim D. H.;Ro C. G.;Sim K. Y.;Bae Y. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.344-347
    • /
    • 2001
  • A high frequency resonant inverter consisting of three unit half-bridge serial resonant inverter used as power source of induction heating at high frequency is presented in this paper. As a output power control strategy, tine-sharing gate control method is applied. The analysis of the proposed circuit is generally described by using the normalized parameters. Also, according to the calculated characteristics value, a method of the circuit design and operating characteristics of the inverter is proposed. This paper proves the validity of theoretical analysis through the experiment. This proposed inverter show that it can be practically used in future as power source system for induction heating application, DC-DC converter etc.

  • PDF