• Title/Summary/Keyword: Power ramp

Search Result 143, Processing Time 0.023 seconds

3D Numerical Investigation on Reservoir System for an Overtopping Wave Energy Convertor

  • Jin, Jiyuan;Liu, Zhen;Hong, Key-Yong;Hyun, Beom-Soo
    • Journal of Navigation and Port Research
    • /
    • v.36 no.2
    • /
    • pp.97-103
    • /
    • 2012
  • Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor, which comprises the circular ramp and reservoir. It collects the overtopped waves and converting water pressure head into electric power through the hydro-turbines installed in the vertical duct, which is fixed in the sea bed. The performance of OWEC can be represented by the operating water heads of the device, which depends on the amount of the wave water overtopping into the reservoir. In the present paper, the reservoir with the duct connecting to the sea water are studied in the 3D numerical wave tank, which has been developed based on the computational fluid dynamics software Fluent 6.3. Both the overtopping motion and the discharges of the reservoir are investigated together, and several shape parameters and incident wave conditions are varied to demonstrate their effects on the performance of OWEC.

A Study on Applying the Direct Control Method for Small Forklift Transmission System (직접 제어 방식을 적용한 소형 지게차 변속 시스템에 관한 연구)

  • Jeong, Y.M.;Lim, K.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.34-40
    • /
    • 2013
  • The transmission control method of small forklift is classified into pilot control method and direct control method. In pilot control method, the hydraulic circuit which consists a lot of components is very complex so the production process is too costly and time consuming. The direct control method contains fewer components that can be configured to simple hydraulic circuit. It has more advantages because the shift sensitivity of transmission is changed easily via the input profile. In this paper, the controller design and the input profile for system are studied to apply to the direct control method. The input profile consists of Fill section, Hold section and Ramp section. The characteristic of each section is obtained through experiment. As the result, the shift sensitivity and starting performance are effected by Fill section and Hold section.

Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

  • Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1324-1335
    • /
    • 2016
  • This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.

Performance Simulation of a Turboprop Engine for Basic Trainer

  • Kong, Changduk;Ki, Jayoung;Chung, Sukchoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.839-850
    • /
    • 2002
  • A performance simulation program for the turboprop engine (PT6A-62), which is the power plant of the first Korean indigenous basic trainer KT-1, was developed for performance prediction, development of an EHMS (Engine Health Monitoring System) and the flight simulator. Characteristics of components including compressors, turbines, power turbines and the constant speed propeller were required for the steady state and transient performance analysis with on and off design point analysis. In most cases, these were substituted for what scaled from similar engine components'characteristics with the scaling law. The developed program was evaluated with the performance data provided by the engine manufacturer and with analysis results of GASTURB program, which is well known for the performance simulation of gas turbines. Performance parameters such as mass flow rate, compressor pressure ratio, fuel flow rate, specific fuel consumption and turbine inlet temperature were discussed to evaluate validity of the developed program at various cases. The first case was the sea level static standard condition and other cases were considered with various altitudes, flight velocities and part loads with the range between idle and 105% rotational speed of the gas generator. In the transient analysis, the Continuity of Mass Flow Method was utilized under the condition that mass stored between components is ignored and the flow compatibility is satisfied, and the Modified Euler Method was used for integration of the surplus torque. The transient performance analysis for various fuel schedules was performed. When the fuel step increase was considered, the overshoot of the turbine inlet temperature occurred. However, in case of ramp increase of the fuel longer than step increase of the fuel, the overshoot of the turbine inlet temperature was effectively reduced.

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.

Development of Speed Limit Safety Wheel used by Trochoid Gear (트로코이드 기어를 이용한 속도제한 안전바퀴 개발)

  • Lee, Dongkeun;Lee, Siyoung;Hong, Youngjun;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1340-1345
    • /
    • 2012
  • Industrial products developed in recent years have focused on usability and stability. Especially, for the products used in daily life, steady efforts have been made to secure the safety. Among them, the products equipped with wheels such as strollers, shopping carts, and carriers can occur the safety accidents by unintended over speed at a ramp. Therefore, development of speed limit device is required to prevent such accidents. However, the existing speed limit devices are very expensive and have a complex drive principle, so it's generally difficult to apply them. In this study, a simple speed limit wheel is suggested which can replace the previous complex and inconvenient speed limit devices. The developed speed limit wheel can be simply applied to existing products by changing the wheels. In addition, it has an advantage to operate only by mechanical mechanism without power supply. Thus it can minimize the cost and waste of resources. For this purpose, the operating condition of the target products was analyzed, and trochoid gear mechanisms were selected for the speed limit. Based on this, finite element analysis was conducted to estimate the operating mechanism. After the prototype of the wheel was produced, the performance under various conditions was tested and has been improved.

A Study on the Method of Combining Empirical Data and Deterministic Model for Fuel Failure Prediction (핵연료 파손 예측을 위한 경험적 자료와 결정론적 모델의 접합 방법)

  • Cho, Byeong-Ho;Yoon, Young-Ku;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.233-241
    • /
    • 1987
  • Difficulties are encountered when the behavior of complex systems (i.e., fuel failure probability) that have unreliable deterministic models is predicted. For more realistic prediction of the behavior of complex systems with limited observational data, the present study was undertaken to devise an approach of combining predictions from the deterministic model and actual observational data. Predictions by this method of combining are inferred to be of higher reliability than separate predictions made by either model taken independently. A systematic method of hierarchical pattern discovery based on the method developed in the SPEAR was used for systematic search of weighting factors and pattern boundaries for the present method. A sample calculation was performed for prediction of CANDU fuel failures that had occurred due to power ramp during refuelling process. It was demonstrated by this sample calculation that there exists a region of feature space in which fuel failure probability from the PROFIT model nearly agree with that from observational data.

  • PDF

Design of High Speed Pipelined ADC for System-on-Panel Applications (System-on-Panel 응용을 위한 고속 Pipelined ADC 설계)

  • Hong, Moon-Pyo;Jeong, Ju-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • We designed an ADC that operated upto 500Msamples/sec based on proposed R-string folding block as well as second folding block. The upper four bits are processed in parallel by the R-string folding block while the lower four bits are processed in pipeline structured second folding block to supply digital output. To verify the circuit performance, we conducted HSPICE simulation and the average power consumption was only 1.34mW even when the circuit was running at its maximum sampling frequency. We further measured noise immunity by applying linear ramp signal to the input. The DNL was between -0.56*LSB and 0.49*LSB and the INL was between -0.93*LSB and 0.72*LSB. We used 0.35 microns MOSIS device parameters for this work.

Fatigue Life Analysis for Solder Joint of Optical Thin Film Filter Device (다층 박막 광학 필터 디바이스의 패키징시 솔더 조인트의 피로파괴 수명 해석)

  • 김명진;이형만
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.19-26
    • /
    • 2003
  • Plastic and creep deformations of a solder joint on thermal cycle play an important role in the reliability of optical telecommunication components. Solder joint strain is increased with the thermal cycle time and it causes mis-alignments and power loss in the optical component. Furthermore, the component can be failed since the deformation exceed the limitation of the fatigue life. We applied the finite element analysis method to solve the problem of the solder joint reliability on thermal cycle. Plastic and creep deformations are calculated by the finite element method. And, the fatigue lire is predicted by using creep-fatigue prediction models with calculated strains. The temperature conditon of the analysis was referred from the Telcordia reliability schedule (-40 to 75). Also, the three ramp renditions, 1/min, 10/min and 50/min, and dwelling time were considered to analyze the differences of results.

  • PDF

A case study on the Occurrence Category of aircraft accidents and serious incidents in Korea in the 2000's (2000년대 국내 항공기 사고·준사고 발생유형 사례연구)

  • Choi, Young-Jae;Ahn, Jae-Hyung;You, Kyung-In;Park, Jung-Gown
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.119-125
    • /
    • 2013
  • Since year 2001 to the present time, the aircraft accidents and serious incidents in our country have surpassed 150 occurrences. The Boeing has published the statistical summary of commercial jet airplane accidents annually for the past 10 years on the basis of the occurrence categories defined by the CICTT(CAST/ICAO Common Taxonomy Team), and the number of occurrences is in order of loss of control(LOC-I), controlled flight into terrain(CFIT) and runway excursion (RE). Like the NTSB and the EASA, when fatal and non-fatal accidents are aggregated, though fatality rate is low, abnormal runway contact(ARC), system/component failure(SCF-PP/NP), ground handling(RAMP) rank high in the CICTT occurrence categories. With the less occurrence frequency, it is difficult to statistically analyze the aircraft accidents in our country, thus customarily the accidents and the serious incidents on aggregate are consolidated, and the statistical analysis is performed. This study categorizes the accidents and serious incidents to the domestic transportation aircraft in the past 10 years according to the CICTT occurrence categories, that is compared with foreign practices, and the implications have been discussed. From years 2001 through 2010, the accidents to the domestic transportation aircraft occurred in order of system failure(SCF-NP), ARC and power plant failure(SCF-PP), and when the accidents and the serious incidents are consolidated and analyzed, it is verified that a distribution appears similar to the European accident occurrence categories defined from 300 accident occurrence data.