• Title/Summary/Keyword: Power network

Search Result 6,000, Processing Time 0.038 seconds

K-Trade : Data-driven Digital Trade Framework (K-Trade : 데이터 주도형 디지털 무역 프레임워크)

  • Kim, Chaemee;Loh, Woong-Kee
    • Journal of Information Technology Services
    • /
    • v.19 no.6
    • /
    • pp.177-189
    • /
    • 2020
  • The OECD has assessed Korea as the third highest in trade facilitation worldwide. The paperless trade of Korea is world class based on uTradeHub : national e-trade service's infrastructure for trade community. Over 800 trade-related document standards provide interoperability of message exchange and trade process automation among exporters, importers, banks, customs, airlines, shippers, forwarders and trade authorities. Most one-to-one unit processes are perfectly paperless & online; however, from the perspective of process flow, there is a lack of streamlining end-to-end trade processes spread over many different parties. This situation causes the trade community to endure repetitive-redundant load for handling trade documents. The trade community has a strong demand for seamless trade flow. For streamlining the trade process, processes with data should flow seamlessly to multilateral parties. Flowing data with an optimized process is the critical success factor to accomplish seamless trade. This study proposes four critical digital trade infrastructures as a platform service : (1) data-centric Intelligent Document Recognition(IDR), (2) data-driven Digital Document Flow (DDF), (3) platform based Digital Collaboration & Communication(DCC), and (4) new digital Trade Facilitation Index (dTFI) for precise assessment of K-Trade Digital Trade Framework. The results of new dTFI analyses showed that redundant reentry load was reduced significantly over the whole trade and logistics process. This study leads to the belief that if put into real-world application can provide huge economic gains by building a new global value chain of the K-trade eco network. A new digital trade framework will be invaluable in promoting national soft power for enhancing global competitiveness of the trade community. It could become the advanced reference model of next trade facilitation infrastructure for developing countries.

P2P Systems based on Cloud Computing for Scalability of MMOG (MMOG의 확장성을 위한 클라우드 컴퓨팅 기반의 P2P 시스템)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose an approach that combines the technological advantages of P2P and cloud computing to support MMOGs that allowing a huge amount of users worldwide to share a real-time virtual environment. The proposed P2P system based on cloud computing can provide a greater level of scalability because their more resources are added to the infrastructure even when the amount of users grows rapidly. This system also relieves a lot of computational power and network traffic, the load on the servers in the cloud by exploiting the capacity of the peers. In this paper, we describe the concept and basic architecture of cloud computing-based P2P Systems for scalability of MMOGs. An efficient and effective provisioning of resources and mapping of load are mandatory to realize this architecture that scales in economical cost and quality of service to large communities of users. Simulation results show that by controlling the amount of cloud and user-provided resource, the proposed P2P system can reduce the bandwidth at the server while utilizing their enough bandwidth when the number of simultaneous users keeps growing.

IIoT processing analysis model for improving efficiency and processing time through characteristic analysis by production product (생산제품별 특성 분석을 통한 효율성 및 처리시간 향상을 위한 IIoT 처리 분석 모델)

  • Jeong, Yoon-Su;Kim, Yong-Tae
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.397-404
    • /
    • 2022
  • Recently, in the industrial field, various studies are being conducted on converging IIoT devices that combine low-power processes and network cards into industrial sites to improve production efficiency and reduce costs. In this paper, we propose a processing model that can efficiently manage products produced by attaching IIoT sensor information to infrastructure built in industrial sites. The proposed model creates production data using IIoT data collection, preprocessing, characteristic generation, and labels to detect abnormally processed sensing information in real time by checking sensing information of products produced by IIoT at regular intervals. In particular, the proposed model can easily process IIoT data by performing tracking and monitoring so that product information produced in industrial sites can be processed in real time. In addition, since the proposed model is operated based on the existing production environment, the connection with the existing system is smooth.

Harmonic ACK Transmissions from Multiple Gateway considering the Quasi-Orthogonal Characteristic of LoRa CSS Spreading Factors (LoRa CSS 확산 인자의 준직교 특성을 고려한 수신응답의 다중 게이트웨이 조화 전송 기법)

  • Byeon, Seunggyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.897-906
    • /
    • 2022
  • In this paper, we propose a novel MAC protocol based on the harmonic transmission of ACK, called HAT-LoRa, for improving the reliability and the utilization in multiple gateway LoRa Networks. LoRa is basically vulnerable to collision due to the primitive pure ALOHA-like MAC. Whereas data frame delivery can be guaranteed by the transparent bridge of multiple receiving gateways, ACK is still transmitted by a single gateway in LoRa Network. HAT-LoRa provides the augmented reception opportunity of ACK via the simultaneous transmissions of identical ACK in multiple spreading factors. The proposed method reduces the expected transmission times of ACK double gateway environment as well as single gateway environment, by 55 and 60% in maximum, by 35% and 40% in average, in a single- and double-gateway environment, respectively. Especially, it outperforms under the environment where the distance between end device and gateways are similar to each other.

Semantic Depth Data Transmission Reduction Techniques using Frame-to-Frame Masking Method for Light-weighted LiDAR Signal Processing Platform (LiDAR 신호처리 플랫폼을 위한 프레임 간 마스킹 기법 기반 유효 데이터 전송량 경량화 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1859-1867
    • /
    • 2021
  • Multi LiDAR sensors are being mounted on autonomous vehicles, and a system to multi LiDAR sensors data is required. When sensors data is transmitted or processed to the main processor, a huge amount of data causes a load on the transport network or data processing. In order to minimize the number of load overhead into LiDAR sensor processors, only semantic data is transmitted through data comparison between frames in LiDAR data. When data from 4 LiDAR sensors are processed in a static environment without moving objects and a dynamic environment in which a person moves within sensor's field of view, in a static experiment environment, the transmitted data reduced by 89.5% from 232,104 to 26,110 bytes. In dynamic environment, it was possible to reduce the transmitted data by 88.1% to 29,179 bytes.

Comparison of Machine Learning Classification Models for the Development of Simulators for General X-ray Examination Education (일반엑스선검사 교육용 시뮬레이터 개발을 위한 기계학습 분류모델 비교)

  • Lee, In-Ja;Park, Chae-Yeon;Lee, Jun-Ho
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.111-116
    • /
    • 2022
  • In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.

A Study on S-Band Phased Array Antenna System for Receiving LEO Satellite Telemetry Signals (저궤도 위성 원격측정데이터 신호 수신을 위한 S-대역 위상배열안테나 시스템 연구)

  • Lee, Dong-Hyo;Seo, Jung-Won;Lee, Myoung-Sin;Chung, Daewon;Lee, Dongkook;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.211-218
    • /
    • 2022
  • This paper presents a S-band phased array antenna system for receiving LEO satellite telemetry signals. The proposed antenna, which is performed to be beam-tiled along the elevation direction, consists of 16 sub-array assemblies, 16 active circuit modules, a perpendicular feed network and a control/power unit. In order to precisely track an LEO satellite, the developed antenna is placed with its elevation axis along the projected trajectory of the satellite on the earth. The center of antenna aperture is facing to the maximum elevation angle in the LEO trajectory. The beam-tilted angles for tracking LEO satellite are obtained by calculating accurately satellite points. Satellite tracking measurements are carried out in the range of ±30° with the respect to the maximum elevation angle. The S/N ratio of 16.5 dB and the Eb/No of 13.3 dB at the maximum elevation angle are obtained from the measurements. The measured result agrees well with the pre-analyzed system margin.

Development of Internet of Things Sensor-based Information System Robust to Security Attack (보안 공격에 강인한 사물인터넷 센서 기반 정보 시스템 개발)

  • Yun, Junhyeok;Kim, Mihui
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.95-107
    • /
    • 2022
  • With the rapid development of Internet of Things sensor devices and big data processing techniques, Internet of Things sensor-based information systems have been applied in various industries. Depending on the industry in which the information systems are applied, the accuracy of the information derived can affect the industry's efficiency and safety. Therefore, security techniques that protect sensing data from security attacks and enable information systems to derive accurate information are essential. In this paper, we examine security threats targeting each processing step of an Internet of Things sensor-based information system and propose security mechanisms for each security threat. Furthermore, we present an Internet of Things sensor-based information system structure that is robust to security attacks by integrating the proposed security mechanisms. In the proposed system, by applying lightweight security techniques such as a lightweight encryption algorithm and obfuscation-based data validation, security can be secured with minimal processing delay even in low-power and low-performance IoT sensor devices. Finally, we demonstrate the feasibility of the proposed system by implementing and performance evaluating each security mechanism.

Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling

  • Dinarvand, Reza;Ardakani, Alireza
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.505-520
    • /
    • 2022
  • In recent years, geotextile-encased gravel columns (usually called stone columns) have become a popular method to increasing soil shear strength, decreasing the settlement, acceleration of the rate of consolidation, reducing the liquefaction potential and increasing the bearing capacity of foundations. The behavior of improved loose base-soil with gravel columns under shear loading and the shear stress-horizontal displacement curves got from large scale direct shear test are of great importance in understanding the performance of this method. In the present study, by performing 36 large-scale direct shear tests on sandy base-soil with different fine-content of zero to 30% in both not improved and improved with gravel columns, the effect of the presence of gravel columns in the loose soils were investigated. The results were used to predict the shear stress-horizontal displacement curve of these samples using support vector machines (SVM). Variables such as the non-plastic fine content of base-soil (FC), the area replacement ratio of the gravel column (Arr), the geotextile encasement and the normal stress on the sample were effective factors in the shear stress-horizontal displacement curve of the samples. The training and testing data of the model showed higher power of SVM compared to multilayer perceptron (MLP) neural network in predicting shear stress-horizontal displacement curve. After ensuring the accuracy of the model evaluation, by introducing different samples to the model, the effect of different variables on the maximum shear stress of the samples was investigated. The results showed that by adding a gravel column and increasing the Arr, the friction angle (ϕ) and cohesion (c) of the samples increase. This increase is less in base-soil with more FC, and in a proportion of the same Arr, with increasing FC, internal friction angle and cohesion decreases.

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.