• 제목/요약/키워드: Power inverter

검색결과 3,963건 처리시간 0.033초

BLDC 모터의 PWM 방법과 파워소자에 따른 인버터 손실분석 (Analysis of Inverter Losses of Brushless DC Motor According to PWM Method and Power Devices)

  • 남명준;조관열;김학원;엄상준;김영진;김기만
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.33-34
    • /
    • 2014
  • In this paper, the inverter switch losses of BLDC motor for three types of PWM method and power devices was analyzed. When BLDC motor is driven at low currents, inverter switch losses for MOSFET is low because MOSFET operates like resistance. But, inverter switch losses for IGBT is higher than MOSFET due to its large turn-off losses. For low power inverter with MOSFET, the power losses of unified PWM is lower than that of unipolar and bipolar PWM.

  • PDF

구형파 구동 BLDCM의 동기정류를 사용한 인버터 손실 저감 (Inverter Losses Reduction for Rectangular Drive BLDCM using Synchronous Rectification)

  • 남명준;김학원;조관열
    • 전력전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.117-125
    • /
    • 2016
  • In this paper, the inverter switch losses of BLDC motor for three types of PWM methods and power devices were analyzed. When the BLDC motor is driven at low currents, the inverter switch losses for MOSFET are low because MOSFET operates like resistance. However, the inverter switch losses for IGBT are higher than MOSFET due to its large turn-off losses. Moreover, synchronous rectification switching method is adaptable because MOSFET has 2-channel. So, MOSFET can be driven with more low impedance and losses. For low power inverter with MOSFET, the power losses of unified PWM are lower than that of unipolar and bipolar PWM. Proposed method and losses analysis results are verified by examination and simulation using Matlab/Simulink.

멀티레벨 직렬 전압형 인버터를 이용한 무효전력보상기(SVC)의 제어 (Control of Static Var Compensator Using A Cascade Typed Multilevel Voltage Source Inverter)

  • 민완기;박용배;김영한;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.332-335
    • /
    • 1996
  • Multilevel voltage source inverters are emerging as a new breed of power inverter options for high power applications. This paper presents a cascade typed multilevel voltage source inverter which has separate de sources for high voltage. This inverter is proposed for flexible ac transmission systems (FACTS) including static var compensator(SVC), series compensation and phase shifting. It can solve the problems of conventional transformer-based multipulse inverters and the problems of multilevel diode-clamped inverters. To show the superiority of multilevel cascaded inverter, simulation results are discussed in detail.

  • PDF

Zinc - Bromine 플로우 배터리를 이용한 양방향 인버터 및 DC-DC 컨버터 설계 및 실증 (Design and verification of Bi-Directional Inverter and Converter using Zinc-Bromine Flow Battery)

  • 이승준;조영훈;임종웅;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.389-390
    • /
    • 2015
  • This paper proposes renewable energy system related with flow battery system which is divided into two system, converter and inverter. The Interleaved Boost Converter circuit was used for DC - DC Converter and Full-Bridge Inverter was used for Grid connected Inverter. This paper design each system and uses methods to operate converter and inverter in high efficiency.

  • PDF

엘리베이터 시스템을 위한 SiC 권상기 드라이브 (SiC Motor Drive for Elevator System)

  • 권진수;문석환;김주찬;이준민
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.147-152
    • /
    • 2019
  • With the recent emphasis on the importance of energy conservation, studies on high-efficiency elevator systems are being continuously conducted. Therefore, pulse width modulation converters are commonly used in traction drives on elevator systems. Wide bandgap devices have been increasingly commercialized, and their application to power conversion systems, such as renewable and energy storage system, has been gradually increasing. In this study, a SiC inverter for an elevator traction drive is investigated. In particular, an inverter is designed to minimize stray and parasitic inductance. Input and output filters are designed by considering switching frequency. The designed SiC inverter reduces volume by approximately 32% compared with that of a Si inverter, and power converter efficiency is over 98.8%.

Extended Boost Single-phase qZ-Source Inverter for Photovoltaic Systems

  • Shin, Hyun-Hak;Cha, Honnyong;Kim, Hongjoon;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.918-925
    • /
    • 2014
  • This study presents an extended boost single-phase qZ-source DC-AC inverter for a single-phase photovoltaic system. Unlike the previously proposed single-phase qZ-source and semi-qZ-source inverters that achieve the same output voltage as that of the traditional voltage-fed full-bridge inverter, the proposed inverter can obtain higher output than input voltage. The proposed inverter also shares a common ground between DC input voltage and AC output voltage. Thus, possible ground leakage current problem in non-isolated grid-tied inverters can be eliminated with the proposed inverter. A 120 W prototype inverter is built and tested to verify the performance of the proposed inverter.

An Improved Switching Topology for Single Phase Multilevel Inverter with Capacitor Voltage Balancing Technique

  • Ponnusamy, Rajan Soundar;Subramaniam, Manoharan;Irudayaraj, Gerald Christopher Raj;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.115-126
    • /
    • 2017
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a reduced number of isolated DC sources and power semiconductor switches. The proposed inverter has only two H-bridges connected in cascade, one switching at a high frequency and the other switching at a low frequency. The Low Switching Frequency Inverter (LSFI) generates seven levels whereas the High Switching Frequency Inverter (HSFI) generates only two levels. This paper also presents a solution to the capacitor balancing issues of the LSFI. The proposed inverter has lot of advantages such as reductions in the number of DC sources, switching losses, power electronic devices, size and cost. The proposed inverter with a capacitor voltage balancing algorithm is simulated using MATLAB/SIMULINK. The switching logic of the proposed inverter with a capacitor voltage balancing algorithm is developed using a FPGA SPATRAN 3A DSP board. A laboratory prototype is built to validate the simulation results.

Induction Heated Load Resonant Tank High Frequency Inverter with Asymmetrical Auxiliary Active Edge-Resonant Soft-Switching Scheme

  • Saha Bishwajit;Fathy Khairy;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.200-202
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbing circuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft-switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

무전극 램프 점등용 2.5MHz급 ZVS 인버터 개발에 관한 연구 (2.5MHz Zero-Voltage-Switching Resonant Inverter for Electrodeless Fluorescent Lamp)

  • 박동현;김희준;조기연;계문호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.261-265
    • /
    • 1997
  • Driving the electrodeless fluorescent lamp, the high ac voltage with high frequency is required. The linear power amplifier has been widely used as a driving circuit of electrodeless fluorescent lamp. However, the low efficiency of the power amplifier causes th driving circuit to be replaced by a PWM switching inverter. In order to use a PWM switching inverter as the driving circuit of an electrodeless fluorescent lamp, the high switching frequency is required. But due to the switching loss at switches of the inverter, the limitation of high switching frequency appears in the inverter. One solution to this limitation is to reduce the switching loss by using the zero voltage switching technique. In this paper, zero voltage switching resonant inverter for driving an electrodeless fluorescent lamp is discussed. The results of analysis about the inverter are presented and the equations for design are established. And the validity of the analyzed results are verified through the experiment.

  • PDF

고조파 저감 능력을 가진 회생용 인버터 시스템 연구 (A study of regenerative inverter system with capability of harmonic reduction)

  • 최창열;배창환;장수진;송상훈;원충연
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.443-448
    • /
    • 2005
  • This paper proposed a regeneration inverter system, which can regenerate the excessive power form dc bus line to ac source for traction system. The proposed regeneration inverter system for dc traction can reduce harmonics which are include to ac current source. The regenerative inverter is operated as two modes. As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In the paper, a regeneration inverter used PWM DC/AC converter algorithm. And an active power filter used p-q theory. The simulation was composed as a prototype model[3kW]. Simulation results show that two algorithm can be used to real model[100kW]. Finally, the inverter was successfully operated as regeneration mode.

  • PDF