• 제목/요약/키워드: Power devices

검색결과 4,696건 처리시간 0.035초

AV 기기를 위한 AC 입력 전류 모니터링 대기 전력 저감 시스템 (Reducing Standby Power Consumption System by Monitoring the AC Input Current for the AV Devices)

  • 이대식;이강현
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1493-1496
    • /
    • 2016
  • This paper proposes a system for reducing the standby power consumption in using the consumer electronic devices such as a television, a home theater, a set-top box, or a DVD player. The system is consisted of a flyback converter, monitoring circuits, a relay and a micro-processor. The proposed system can reduce the standby power consumption by disconnecting the AC input and the consumer devices can be turned on with a remote control. The proposed standby power system consumes the low power to receive the infrared signal from the remote controller. Furthermore, a electronic double layer capacitor is used to store the energy with high efficiency. The proposed power system can operate the 플라이백 converter to charge the electronic double layer capacitor and connect the AC input to the consumer electronic devices. The proposed power circuit can reduce the standby power consumption in AV devices without increasing the cost. The prototype is implemented to verify the system with the commercialized products.

Development of Mock Control Devices and Data Acquisition Apparatus for Power Tiller Training Simulator

  • Kim, YuYong;Kim, Byounggap;Shin, Seung-yeoub;Kim, Byoungin;Hong, Sunjung
    • Journal of Biosystems Engineering
    • /
    • 제40권3호
    • /
    • pp.284-288
    • /
    • 2015
  • Training power tiller operators in safe farming is necessary to avoid farming accidents. With the continuing progress in computational technology, driving simulators have become increasingly popular for conducting such training. Purpose: The objective of this study is to develop mock control devices and data acquisition apparatus for a tiller simulator. Methods: Except for the stand and tail wheel adjusting levers, the mock control devices were developed using a tiller handle assay. The data acquisition apparatus was realized using an embedded data-logging device and LabVIEW, the system design software. Results: The control devices of a real handle assay were successfully mimicked by the mock operator control devices, which used sensors for the relevant measurements. The data from the mock devices were acquired and transmitted to the main computer at intervals of 10 ms via Wi-Fi. Conclusions: The developed mock control devices operate similar to real power tillers and can be utilized in power tiller training simulators.

저압차단기의 차단보호협조 특성연구 (A study of coordination under short-circuit conditions between circuit-breakers)

  • 오준식;나칠봉;함길호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.476-478
    • /
    • 2001
  • Coordination under short-circuit conditions is a systematic application of protective devices in the electrical power system, which, in response to a fault, will remove only a minimum amount of equipment from service. The objective is not only to minimize the equipment damage and process outage costs, but also to protect personnel from the effects of these failures. The coordination study of an electric power system consists of an organizes time-current study of all devices in series from the utilization device to the source. This study is a comparison of the time it takes the individual devices to operate when certain levels of normal or abnormal current pass through the protective devices. The objective of a coordination study is to determine the characteristics, ratings, and settings of overcurrent protective devices that will ensure that the minimum unfaulted load is interrupted when the protective devices isolate a fault or overload anywhere in the system. At the same time, the devices and settings selected should provide satisfactory protection against overloads on the equipment and interrupt short-circuit as rapidly as possible.

  • PDF

고출력 전자기파의 커플링 효과에 의한 마이크로 컨트롤러의 손상 (The Damage of Microcontroller Devices due to Coupling Effects under High Power Electromagnetic Wave by Magnetron)

  • 홍주일;황선묵;허창수
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2263-2268
    • /
    • 2008
  • We investigated the malfunction and destruction characteristics of microcontroller devices under high power electromagnetic(HPEM) wave by magnetron. HPEM was rated at a microwave output of 0 to 1,000 W, at a frequency of 2,450${\pm}$50 MHz and was radiated from the open-ended standard rectangular waveguide(WR-340) to free space. The influence of different reset-, clock-, data-, and power supply-line lengths has been tested. The variation of the line length was done with flat cables. The susceptibility of the tested microcontroller devices was in general much influenced by clock-, reset-, and power supply-line length, little influenced by data-line length. Further the line length was increased, the malfunction threshold was decreased as expected, because more energy couples to the devices. The surfaces of the destroyed microcontroller devices were removed and the chip conditions were investigated with microscope. The microscopic analysis of the damaged devices showed component and bondwire destructions such as breakthroughs and melting due to thermal effects. The obtained results are expected to provide fundamental data for interpreting the combined mechanism of microcontroller devices in an intentional microwave environment.

모바일 IoT 디바이스 파워 관리의 체계적인 개발 방법: 휘처 기반 가변성 모델링 및 자산 개발 (Systematic Development of Mobile IoT Device Power Management: Feature-based Variability Modeling and Asset Development)

  • 이혜선;이강복;방효찬
    • 정보과학회 논문지
    • /
    • 제43권4호
    • /
    • pp.460-469
    • /
    • 2016
  • 사물인터넷(IoT)은 다양한 디바이스가 유무선 네트워크를 통해 연결되어 정보를 수집, 처리, 교환, 공유하는 환경이다. 대표적 디바이스가 스마트폰 같은 모바일 IoT 디바이스인데, 사용자에게 고성능서비스를 제공하기 위해 파워를 많이 소비하지만 상시 공급할 수 없어서 주어진 IoT 환경에 적합하게 파워 관리를 하는 것이 필수적이다. 하지만 기존 모바일 IoT 디바이스의 파워 관리에는 AP, AP 내/외부 HW 모듈, OS, 플랫폼, 어플리케이션 등 다양한 요소가 복잡하게 얽혀 있어서 이 관계를 쉽게 파악하고 관리하는 체계적인 방법이 필요하다. 또한 파워 관리와 연관된 다양한 관리 정책, 운영 환경, 알고리즘 등 가변 요소를 분석하고 이를 파워 관리 개발에 반영하는 것이 필요하다. 본 논문에서는 이러한 문제점을 해결하고 모바일 IoT 디바이스 파워 관리를 체계적으로 개발하기 위한 공학 원칙과 이를 기반으로 한 방법을 제안한다. 실행가능성 검증을 위해 커넥티드 헬멧 시스템 파워 관리가 사례연구로 사용되었다.

FACTS 기기를 이용한 전력시스템의 안전도 향상 (The Enhancement of Power System Security Using flexible AC Transmission Systems (FACTS))

  • 송성환;임정욱;문승일
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권3호
    • /
    • pp.165-172
    • /
    • 2003
  • This paper presents an operation scheme to enhance the power system security by applying FACTS on Power systems. Three main generic types of FACTS devices are suggested an illustrated. Flow congestions over lines have been solved by controlling active power of series-compensated FACTS devices and low voltages at buses have been solved by controlling reactive power of shunt-compensated FACTS devices. Especially, Especially, UPFC has been applied in both line congestion and low voltages. Two kinds of indices which indicate the power system security level related to line flow and bus voltage are utilized in this paper. They have been minimized to enhance the power system security level through the iterative method and the sensitivity vector of security index is derived to determine the direction to minimum. The proposed algorithm has been tested on the IEEE 57-bus system with FACTS devices in a normal condition and a line-faulted contingency.

회로 시뮬레이션을 위한 MOS 제어 다이리스터의 PSPICE 모델 (A Pspice Model of MOS-Controlled Thyrister for Circuit Simlulation)

  • 이영국;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.382-384
    • /
    • 1995
  • The advancement of power semiconductor devices has given great attribution to the performance and reliability or power conversion systems. But contemporary power devices have room for improvement. So much interest and endeavor are being applied to develop an improved power devices. The MOS-Controlled Thyristor(MCT)is a recently developed power device which combines four layers thyristor structure and MOS-gate. Owing to advantages compared to other devices in many respects, the MCT attracts much notice recently. Nowadays, in designing and manufacturing power conversion systems, the importance of circuit simulation for reducing cost and time is incensed. And to excute the simulation that resemble the real system as much as possible, to develop a model of power device that provides properly static and dynamic characteristics is important. So, this paper presents a PSPICE model of the MCT considering dynamic characteristics.

  • PDF

Loss Analysis and Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbine Systems

  • Lee, Kihyun;Suh, Yongsug;Kang, Yongcheol
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1380-1391
    • /
    • 2015
  • This paper provides a loss analysis and comparison of high power semiconductor devices in 5MW Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) Wind Turbine Systems (WTSs). High power semiconductor devices of the press-pack type IGCT, module type IGBT, press-pack type IGBT, and press-pack type IEGT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on the back-to-back type 3-level Neutral Point Clamped Voltage Source Converters (3L-NPC VSCs) supplied from a grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through a loss analysis considering both the conduction and switching losses under the operating conditions of 5MW PMSG wind turbines, particularly for application in offshore wind farms. This paper investigates the loss analysis and thermal performance of 5MW 3L-NPC wind power inverters under the operating conditions of various power factors. The loss analysis and thermal analysis are confirmed through PLECS Blockset simulations with Matlab Simulink. The comparison results show that the press-pack type IGCT has the highest efficiency including the snubber loss factor.

Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs

  • Ke, Junji;Zhao, Zhibin;Sun, Peng;Huang, Huazhen;Abuogo, James;Cui, Xiang
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.1054-1067
    • /
    • 2019
  • This paper systematically investigates the influence of device parameters spread on the current distribution of paralleled silicon carbide (SiC) MOSFETs. First, a variation coefficient is introduced and used as the evaluating norm for the parameters spread. Then a sample of 30 SiC MOSFET devices from the same batch of a well-known company is selected and tested under the same conditions as those on datasheet. It is found that there is big difference among parameters spread. Furthermore, comprehensive theoretical and simulation analyses are carried out to study the sensitivity of the current imbalance to variations of the device parameters. Based on the concept of the control variable method, the influence of each device parameter on the steady-state and transient current distributions of paralleled SiC MOSFETs are verified separately by experiments. Finally, some screening suggestions of devices or chips before parallel-connection are provided in terms of different applications and different driver configurations.

센서 기반 사용자 상태 인식 알고리즘을 이용한 저전력 서비스에 관한 연구 (Study on the Low Power Service with User State Recognition Algorithm Using Sensors)

  • 이도경;홍원기;차경애
    • 대한임베디드공학회논문지
    • /
    • 제10권2호
    • /
    • pp.91-99
    • /
    • 2015
  • The electric power consumed by the embedded devices has become a critical issue because the reduction of power consumption is an important factor to prolong the battery-operated devices' lifetime. Many researches and techniques to reduce the power consumption have been proposed and developed but any power method cannot guarantee optimal power consumption of an embedded device - it would be faced with numerous situation - in all ways. Specifically, power researches for embedded devices deployed in the industry field have hardly been done. In this paper, low power service is proposed to minimize power reduction with the several usage status of embedded devices in the industry field. The usage status is basically classified according to the distance between the device and the user which is obtained by the ultrasonic and PIR sensor. The performance evaluation shows that the proposed scheme can reduce the power consumption by up to 45.3% compared to the device with no power reduction scheme. It also shows that the power consumption of the proposed scheme is 5.2% ~ 16.8% lower than that of the timeout scheme.