• 제목/요약/키워드: Power decoupling

검색결과 203건 처리시간 0.023초

Power Integrity and Shielding Effectiveness Modeling of Grid Structured Interconnects on PCBs

  • Kwak, Sang-Keun;Jo, Young-Sic;Jo, Jeong-Min;Kim, So-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권3호
    • /
    • pp.320-330
    • /
    • 2012
  • In this paper, we investigate the power integrity of grid structures for power and ground distribution on printed circuit board (PCB). We propose the 2D transmission line method (TLM)-based model for efficient frequency-dependent impedance characterization and PCB-package-integrated circuit (IC) co-simulation. The model includes an equivalent circuit model of fringing capacitance and probing ports. The accuracy of the proposed grid model is verified with test structure measurements and 3D electromagnetic (EM) simulations. If the grid structures replace the plane structures in PCBs, they should provide effective shielding of the electromagnetic interference in mobile systems. An analytical model to predict the shielding effectiveness (SE) of the grid structures is proposed and verified with EM simulations.

Decoupling of the Secondary Saliencies in Sensorless PMSM Drives using Repetitive Control in the Angle Domain

  • Wu, Chun;Chen, Zhe;Qi, Rong;Kennel, Ralph
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1375-1386
    • /
    • 2016
  • To decouple the secondary saliencies in sensorless permanent magnet synchronous machine (PMSM) drives, a repetitive control (RC) in the angle domain is proposed. In this paper, the inductance model of a concentrated windings surface-mounted PMSM (cwSPMSM) with strong secondary saliencies is developed. Due to the secondary saliencies, the estimated position contains harmonic disturbances that are periodic relative to the angular position. Through a transformation from the time domain to the angle domain, these varying frequency disturbances can be treated as constant periodic disturbances. The proposed angle-domain RC is plugged into an existing phase-locked loop (PLL) and utilizes the error of the PLL to generate signals to suppress these periodic disturbances. A stability analysis and parameter design guidelines of the RC are addressed in detail. Finally, the proposed method is carried out on a cwSPMSM drive test-bench. The effectiveness and accuracy are verified by experimental results.

Control of Electrically Excited Synchronous Motors with a Low Switching Frequency

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng;Fu, Xiao
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.615-622
    • /
    • 2012
  • The switching frequency of the power electronic devices used in large synchronous motor drives is usually kept low (less than 1 kHz) to reduce the switching losses and to improve the converter power capability. However, this results in a couple of problems, e.g. an increase in the harmonic components of the stator current, and an undesired cross-coupling between the magnetization current component ($i_m$) and the torque component ($i_t$). In this paper, a novel complex matrix model of electrically excited synchronous motors (EESM) was established with a new control scheme for coping with the low switching frequency issues. First, a hybrid observer was proposed to identify the instantaneous fundamental component of the stator current, which results in an obvious reduction of both the total harmonic distortion (THD) and the low order harmonics. Then, a novel complex current controller was designed to realize the decoupling between $i_m$ and $i_t$. Simulation and experimental results verify the effectiveness of this novel control system for EESM drives.

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

최대출력추종 제어를 포함한 단상 태양광 인버터를 위한 새로운 입출력 고조파 제거법 (A Novel Input and Output Harmonic Elimination Technique for the Single-Phase PV Inverter Systems with Maximum Power Point Tracking)

  • Amin, Saghir;Ashraf, Muhammad Noman;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.207-209
    • /
    • 2019
  • This paper proposes a grid-tied photovoltaic (PV) system, consisting of Voltage-fed dual-active-bridge (DAB) dc-dc converter with single phase inverter. The proposed converter allows a small dc-link capacitor, so that system reliability can be improved by replacing electrolytic capacitors with film capacitors. The double line frequency free maximum power point tracking (MPPT) is also realized in the proposed converter by using Ripple Correlation method. First of all, to eliminate the double line frequency ripple which influence the reduction of DC source capacitance, control is developed. Then, a designing of Current control in DQ frame is analyzed and to fulfill the international harmonics standards such as IEEE 519 and P1547, $3^{rd}$ harmonic in the grid is directly compensated by the feedforward terms generated by the PR controller with the grid current in stationary frame to achieve desire Total Harmonic Distortion (THD). 5-kW PV converter and inverter module with a small dc-link film capacitor was built in the laboratory with the proposed control and MPPT algorithm. Experimental results are given to validate the converter performance.

  • PDF

Voltage Balance Control of Cascaded H-Bridge Rectifier-Based Solid-State Transformer with Vector Refactoring Technology in αβ Frame

  • Wong, Hui;Huang, Wendong;Yin, Li
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.487-496
    • /
    • 2019
  • For a solid-state transformer (SST), some factors, such as signal delay, switching loss and differences in the system parameters, lead to unbalanced DC-link voltages among the cascaded H-bridges (CHB). With a control method implemented in the ${\alpha}{\beta}$ frame, the DC-link voltages are balanced, and the reactive power is equally distributed among all of the H-bridges. Based on the ${\alpha}{\beta}$ frame control, the system can achieve independent active current and reactive current control. In addition, the control method of the high-voltage stage is easy to implement without decoupling or a phase-locked loop. Furthermore, the method can eliminate additional current delays during transients and get the dynamic response rapidly without an imaginary current component. In order to carry out the controller design, the vector refactoring relations that are used to balance DC-link voltages are derived. Different strategies are discussed and simulated under the unbalanced load condition. Finally, a three-cell CHB rectifier is constructed to conduct further research, and the steady and transient experimental results verify the effectiveness and correctness of the proposed method.

위성용 전장품 탑재보드의 Power Integrity 및 Signal Integrity 설계 분석을 통한 노이즈 성능 개선 (Improvement of Noise Characteristics by Analyzing Power Integrity and Signal Integrity Design for Satellite On-board Electronics)

  • 조영준;김철영
    • 한국항공우주학회지
    • /
    • 제48권1호
    • /
    • pp.63-72
    • /
    • 2020
  • 본 연구에서는 위성용 전장품 보드의 성능 요구조건과 설계 복잡도가 높아지면서 증가되는 노이즈 문제를 최소화하기 위해 전원 건전성(Power Integrity) 및 신호 건전성(Signal Integrity)의 설계 분석이 수행되었고 이를 통해 적용된 설계 개선 내용을 기술하였다. 전원 건전성은 정전류 전압강하(DC IR drop) 해석을 통해 정적 전원의 특성을 분석하였고, 각 전원의 임피던스 해석을 통해 동적 전원의 특성을 분석하여 각 분석 결과를 이용한 설계 개선 방안들이 적용되었다. 신호 건전성 측면에서는 주요 데이터버스 신호에 대한 시간영역 파형 분석과 PCB(Printed Circuit Board) 설계 수정을 통해 노이즈가 개선된 결과를 확인하였다. 또한 설계된 PCB 보드의 전원 층에 대한 공진모드를 분석하여 발생된 공진 영역들에 완화 조치를 적용하였고 조치결과를 시뮬레이션을 통해 확인하였다. 최종적으로 분석을 통해 설계 개선이 적용된 유닛에 대해 수정 전과 후의 EMC(Electro Magnetic Compatibility) RE(Radiated Emission) 노이즈 측정결과를 비교함으로써 방사성 노이즈가 감소되었음을 확인하였다.

분산 전원 시스템의 전력품질 향상을 위한 계통연계 인버터의 이중 전류제어 기법 (Dual Current Control Scheme of a Grid-connected Inverter for Power Quality Improvement in Distributed Generation Systems)

  • 김경화
    • 조명전기설비학회논문지
    • /
    • 제29권9호
    • /
    • pp.33-41
    • /
    • 2015
  • To improve the power quality of distributed generation (DG) systems even in the presence of distorted grid condition, dual current control scheme of a grid-connected inverter is proposed. The proposed current control scheme is achieved by decomposing the inverter state equations into the fundamental and harmonic components. The derived models are employed to design dual current controllers. The conventional PI decoupling current controller is used in the fundamental model to control the main power flow in DG systems. At the same time, the predictive control is applied in the harmonic model to suppress undesired harmonic currents to zero quickly. To decompose the voltage inputs and state variables into the fundamental and harmonic components, the fourth order band pass filter (BPF) is designed in the discrete-time domain for a digital implementation. For experimental verification, 2kVA prototype of a grid-connected inverter has been constructed using digital signal processor (DSP) TMS320F28335. The effectiveness of the proposed strategy is demonstrated through comparative simulation and experimental results.

Improved Decoupled Control and Islanding Detection of Inverter-Based Distribution in Multibus Microgrid Systems

  • Pinto, Smitha Joyce;Panda, Gayadhar
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1526-1540
    • /
    • 2016
  • This work mainly discusses an accurate and fast islanding detection based on fractional wavelet packet transform (FRWPT)for multibus microgrid systems. The proposed protection scheme uses combined desirable features retrieved from discrete fractional Fourier transform (FRFT) and wavelet packet transform (WPT) techniques, which provides precise time-frequency information on minute perturbation signals introduced in the system. Moreover, this study focuses on the design of decoupling control with a distributed controller based on state feedback for the efficient operation of microgrid systems that are transitioning from the grid-connected mode to the islanded mode. An IEEE 9-bus test system with inverter based distributed generation (DG) units is considered for islanding assessment and smooth operation. Finally, tracking errors are greatly reduced with stability improvement based on the proposed controller. FRWPT based islanding detection is demonstrated via a time domain simulation of the system. Simulated results show an improvement in system stability with the application of the proposed controller and accurate islanding detection based on the FRWPT technique in comparison with the results obtained by applying the wavelet transform (WT) and WPT.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.