Browse > Article
http://dx.doi.org/10.6113/JPE.2019.19.2.487

Voltage Balance Control of Cascaded H-Bridge Rectifier-Based Solid-State Transformer with Vector Refactoring Technology in αβ Frame  

Wong, Hui (School of Electrical Engineering, Guangxi University)
Huang, Wendong (School of Electrical Engineering, Guangxi University)
Yin, Li (School of Electrical Engineering, Guangxi University)
Publication Information
Journal of Power Electronics / v.19, no.2, 2019 , pp. 487-496 More about this Journal
Abstract
For a solid-state transformer (SST), some factors, such as signal delay, switching loss and differences in the system parameters, lead to unbalanced DC-link voltages among the cascaded H-bridges (CHB). With a control method implemented in the ${\alpha}{\beta}$ frame, the DC-link voltages are balanced, and the reactive power is equally distributed among all of the H-bridges. Based on the ${\alpha}{\beta}$ frame control, the system can achieve independent active current and reactive current control. In addition, the control method of the high-voltage stage is easy to implement without decoupling or a phase-locked loop. Furthermore, the method can eliminate additional current delays during transients and get the dynamic response rapidly without an imaginary current component. In order to carry out the controller design, the vector refactoring relations that are used to balance DC-link voltages are derived. Different strategies are discussed and simulated under the unbalanced load condition. Finally, a three-cell CHB rectifier is constructed to conduct further research, and the steady and transient experimental results verify the effectiveness and correctness of the proposed method.
Keywords
${\alpha}{\beta}$ frame control; Cascaded H-bridge rectifier; Solid-state transformer; Voltage and power balance; Vector refactoring;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power & Energy Mag., Vol. 7, No. 2, pp. 52-62, Mar/Apr. 2009.   DOI
2 T. Besselmann, A. Mester, and D. Dujic, “Power electronic traction transformer: Efficiency improvements under light-Load conditions,” IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 3971-3981, Aug. 2014.   DOI
3 C. Liu, P. W. Sun, J. S. Lai, Y. C. Ji, M. Y. Wang, C. L. Chen, and G. W. Cai, “Cascade dual-boost/buck activefront-end converter for intelligent universal transformer,” IEEE Trans. Ind. Electron., Vol. 59, No. 12, pp. 4671-4680, Dec. 2012.   DOI
4 E. R. Ronan, S. D. Sudhoff, S. F. Glover, and D. L. Galloway, “A power electronic-based distribution transformer,” IEEE Trans. Power Del., Vol. 17, No. 2, pp. 537-543, Apr. 2002.   DOI
5 T. F. Zhao, J. Zeng, S. Bhattacharya, M. E. Baran, and A. Q. Huang, "An average model of solid state transformer for dynamic system simulation," in Proc. IEEE Power Energy &. Gen. Meeting, pp. 1-8, 2009.
6 A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng and S. J. Dale, “The future renewable electric energy delivery and management (FREEDM) system: The energy internet,” Proceedings of the IEEE, Vol. 99, No. 1, pp. 133-148, Jan. 2011.   DOI
7 X. She, X. W. Yu, F. Wang, and A. Q. Huang, “Design and demonstration of a 3.6-kV 120-V/10-kVA solid-state transformer for smart grid application,” IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 3982-3996, Aug. 2014.   DOI
8 T. Zhao, G. Wang, S. Bhattacharya, and A. Q. Huang, “Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer,” IEEE Trans. Power Electron, Vol. 28, No. 4, pp. 1523-1532, Apr. 2013.   DOI
9 J. H. Feng, W. Q. Chu, Z. X. Zhang, and Z. Q. Zhu, "Power electronic transformer-based railway traction systems: challenges and opportunities," IEEE Trans. Power Electron., Vol. 5, No. 3, pp.1237-1253, Sep. 2017.
10 B. Zhao, Q. Song, J. G. Li, Q. H. Sun, and W. H. Liu, “Full-Process operation, control, and experiments of modular high-frequency-link DC transformer based on dual active bridge for flexible MVDC distribution: a practical tutorial,” IEEE Trans. Power Electron., Vol. 32, No. 9, pp. 6751-6766, Sep. 2017.   DOI
11 X. She, A. Q. Huang, and R. Burgos, “Review of solid-state transformer technologies and their application in power distribution systems,” IEEE J. Emerg. Sel. topics Power Electron., Vol. 1, No. 3, pp. 186-198, Sep. 2013.   DOI
12 H. Akagi, "Classification, terminology, and application of the modular multilevel cascade converter (MMCC)," IEEE Trans. Power Electron., Vol. 26, pp. 3119-3130, Nov. 2011.   DOI
13 Y. Liu, A. Q. Huang, W. C. Song, S. Bhattacharya, and G. J. Tan, “Small-signal model-based control strategy for balancing individual DC capacitor voltages in cascaded multilevel inverter-based STATCOM,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2259-2269, Jun. 2009.   DOI
14 Y. F. Yu, G. Konstantinou, B. Hredzak, and V. G. Agelidis, “Power balance of cascaded H-Bridge multilevel converters for large-scale photovoltaic integration,” IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 292-303, Jan. 2016.   DOI
15 X. She, A.Q. Huang, and X. J. Ni, “Current sensorless power balance strategy for DC/DC converters in a cascaded multilevel converter based solid state transformer,” IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 17-22, Jan. 2014.   DOI
16 X. She, A. Q. Huang, F. Wang, and R. Burgos, “Wind energy system with integrated active power transfer, reactive power compensation, and voltage conversion functions,” IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4512-4524, Oct. 2013.   DOI
17 M. Mazuela, I. Baraia, A. Sanchez-Ruiz, I. Echeverria, I. Torre, and I. Atutxa, “Simple voltage balancing method to protect series-connected devices experimentally verified in a 5L-MPC converter,” IEEE Trans. Ind. Electron, Vol. 65, No. 5, pp. 3699-3707, May. 2018.   DOI
18 S. A. Khajehoddin, A. Bakhshai, and P. K. Jain, “A simple voltage balancing scheme for m-level diode-clamped multilevel converters based on a generalized current flow model,” IEEE Trans. Power Electron., Vol. 23, No. 5, pp. 2248-2259, Sep. 2008.   DOI
19 S. B. Monge, S. Alepuz, J. Rocabert, and J. Bordonau, “Pulsewidth modulations for the comprehensive capacitor voltage balance of n-level two-leg diode-clamped converters,” IEEE Trans. Power Electron., Vol. 24, No. 8, pp. 1951-1959, Aug. 2009.   DOI
20 B. P. McGrath, D. G. Holmes, and W. Y. Kong, “A decentralized controller architecture for a cascaded H-bridge multilevel converter,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1169-1178, Mar. 2014.   DOI
21 C. Han, A. Q. Huang, Yu. L, and B. Chen, "A generalized control strategy of per-phase DC voltage balancing for cascaded multilevel converter-based STATCOM," in Proc. IEEE Power Electron. Spec. Conf, pp. 1746-1752, 2007.
22 X. Y. Wang, J. J. Liu, S. D. Ouyang, and F. Meng, "Research on unbalanced-load correction capability of two power electronic transformer topologies," IEEE Trans. Power Electron., Vol. 30, No. 6, pp.3044-3056, Jun. 2015.   DOI
23 X. She, A .Q. Huang, T. F. Zhao, and G. Y. Wang, “Coupling effect reduction of a voltage-balancing controller in single-phase cascaded multilevel converters,” IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3530-3543, Aug. 2012.   DOI
24 G. Farivar, B. Hredzak, and V. G. Agelidis, "Decoupled control system for cascaded H-Bridge multilevel converter based STATCOM," IEEE Trans. Ind. Electron., Vol. 63, No. 1, pp.322-331, Jan. 2016.   DOI
25 D. S. Sha, G. Xu, and Y. X. Xu, “Utility direct interfaced charger/discharger employing unified voltage balance control for cascaded H-Bridge units and decentralized control for CF-DAB modules,” IEEE Trans. Ind. Electron., Vol. 64, No. 10, pp. 7831-7841, Oct. 2017.   DOI
26 J. A. Barrena, L. Marroyo, M. A. R. Vidal, and J. R. T. Apraiz, “Individual voltage balancing strategy for PWM cascaded H-bridge converter based STATCOM,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 21-29, Jan. 2008.   DOI
27 S. Somkun and V. Chunkag, “Unified unbalanced synchronous reference frame current control for single-phase gridconnected voltage source converters,” IEEE Trans. Ind. Electron., Vol. 63, No. 9, pp. 5425-5436, Sep. 2016.   DOI
28 D. L. Yang, N. Wu, L. Yin, and Z. G. Lu, “Natural frame control of single-phase cascaded H-Bridge multilevel converter based on fictive-phases construction,” IEEE Trans. Ind. Electron., Vol. 65, No. 5, pp. 3848-3857, May. 2018.   DOI