• Title/Summary/Keyword: Power current controller

Search Result 1,231, Processing Time 0.023 seconds

Voltage Control of a Synchronous Generator for Ship using a Compound Type Digital AVR (혼합형 디지털 자동 전압 조정 장치를 이용한 선박용 동기발전기의 출력전압제어)

  • Park, Sang-Hoon;Lee, Sang-Seuk;Yu, Jae-Sung;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.397-403
    • /
    • 2009
  • In this paper, an exciter current control of a synchronous generator for ships using a compound type digital automatic voltage regulator (DVAR) in order to provide a constant output voltage of the generator is presented. The compound type DAVR is composed of a controller part to adjust output voltage and an power source unit to supply power to the exciter. The controller part, which generates the PWM switching pattern via the PI controller, drives a power MOSFET for bypass to limit the SG's exciter current. The power source unit part is parallel connected to an output terminal of the generator through a reactor and a power CT. The residual magnetic flux of SG provides exciter current to the exciter through the reactor during the initial running or no load state and load current supplies field current to the exciter through the power CT during loading state. This paper confirmed an experiment to verify the validity of compound type DAVR system for controlling output voltage of synchronous generator.

Unified Controller for 100kVA Emergency Generator (100kV급 비상발전기용 통합제어기)

  • Jeong, C.Y.;Cho, J.G.;Baek, J.W.;Lee, J.J.;Kim, Y.J.;Yoo, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2801-2803
    • /
    • 1999
  • An unified controller for emergency generator is presented to control AVR and Governor and l00kVA power conditioner. This controller is operated to compensate current harmonics and asymmetries caused by nonlinear load and unbalance loads. The power conditioner shapes the source current sinusoidal in phase with source voltage and allows the generator to maximum power even to the single phase load. Also this power conditioner allows that three phase generator synchronizes with single phase main source and load sharing. An l00kVA generator system was built and the unified controller is realized with DSP(TMS320C32PCMA). Experimental results for many load conditions are presented to verify the performance of the unified controller.

  • PDF

Design of Fast and Overshoot Free Digital Current Controller (오버슈트 없는 고속 디지털 전류제어기 설계)

  • 이진우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.163-169
    • /
    • 2000
  • From the viewpoint of the cost effective design of power conversion systems, it is very important to fully u utilize the CillTent capacity of power devices over all circumstances. Therefore this paper deals with the l practical design of digital CillTent controller to meet the requirements of fast and overshoot free control r response over the varying control voltage bOlmds, the accompanied computational delay, and the system U W1certainties. The proposed controller consists of high gain PI control schemes using both the conditional i integrator and the modified delay compensator. The simulation and experimental results show the validity of t the proposed controller.

  • PDF

Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor-Current-Feedback Active Damping

  • Lyu, Yongcan;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1322-1333
    • /
    • 2014
  • To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor-current-feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.

Average Current Control of Active Power Filters Using Predictive Current Controller (예측전류제어기를 이용한 능동전력필터 시스템의 평균치 전류제어)

  • Kim, Min-Keuk;Woo, Myung-Ho;Jeong, Seung-Gi;Park, Ki-Won;Choi, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.295-299
    • /
    • 1996
  • When the current of a power converter is controlled with a digital controller, it generally shows the error due to execution time delay. The error may be considerable in such systems as active power filters wherein the current varies steeply even in steady state, as well as in transients. Therefore, it is of particular importance to compensate the time delay effect in a digitally-controlled active power filter. This paper introduces a modification of so-called predictive current control, by taking the control time delay into consideration. The results of simulation and experiment with a 10 kVA active power filter prototype show considerable improvement in current tracking capability, validating the proposed current control method.

  • PDF

A Seamless Transfer Algorithm Based on Frequency Detection with Feedforward Control Method in Distributed Generation System

  • Kim, Kiryong;Shin, Dongsul;Lee, Jaecheol;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1066-1073
    • /
    • 2015
  • This paper proposes a control strategy based on the frequency detection method, comprising a current control and a feed-forward voltage control loop, is proposed for grid-interactive power conditioning systems (PCS). For continuous provision of power to critical loads, PCS should be able to check grid outages instantaneously. Hence, proposed in the present paper are a frequency detection method for detecting abnormal grid conditions and a controller, which consists of a current controller and a feedforward voltage controller, for different operation modes. The frequency detection method can detect abnormal grid conditions accurately and quickly. The controller which has current and voltage control loops rapidly helps in load voltage regulation when grid fault occurs by changing reference and control modes. The proposed seamless transfer control strategy is confirmed by experimental results.

Versatile Shunt Hybrid Power Filter to Simultaneously Compensate Harmonic Currents and Reactive Power

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1311-1318
    • /
    • 2015
  • This paper introduces a novel topology and an effective control strategy for a shunt hybrid power filter (SHPF) to simultaneously compensate harmonic currents and reactive power. The proposed SHPF topology is composed of an LC passive filter tuned to the 7th harmonic frequency and a small-rated active filter connected in parallel with the inductor Lpf of the LC passive filter. Together with the SHPF topology, we also propose a control strategy, which consists of a proportional-integral (PI) controller for DC-link voltage regulation and a PI plus repetitive current controller, in order to compensate both the harmonic current and the reactive power without the need for additional hardware. Thanks to the effectiveness of the proposed control scheme, the supply current is sufficiently compensated to be sinusoidal and in-phase with the supply voltage, regardless of the distorted and phase lagging of the load current. The effectiveness of the proposed SHPF topology and control strategy is verified by simulated and experimental results.

Design of High Performance 5 Phase Step Motor Drive System with Current Control Loop (전류 제어기를 가지는 고성능 5상 스텝 모터 구동 드라이버 설계)

  • Chun, Kwang-Su;Kim, Hak-Jin;Kwon, Yong-Kwan;Kang, Suk-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.447-453
    • /
    • 2006
  • This paper proposes that 5 phase step motor drive system has high performance utilizing a micro step control with a current controller. Also this paper proposes an analog current controller to minimize size of the 5 phase step motor drive system. It has better advantages of cost and noise and heating than commercial products. As a result, Applying this system to position control robot the validity of suggested analog current controller and driver system is verified.

A Simple Continuous Conduction Mode PWM Controller for Boost Power Factor Correction Converter

  • Tanitteerapan, Tanes;Mori, Shinsaku
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1030-1033
    • /
    • 2002
  • This paper, a new simple controller operates in continuous conduction mode (CCM) for Boost power factor collection converter is introduced. The duty ratios are obtained by comparisons of a sensed signal from inductor current and a negative ramp carrier waveform in each switching period. By using the proposed controller, input voltage sensing, error amplifier in the current feedback loop, and analog multiplier/divider are not required, then, the control circuit implementation is very simple. To verify the proposed controller, the circuit simulation for Boost power factor correction converter was applied. For the results, the input current waveform was shaped to be closely sinusoidal, implying low THD.

  • PDF

Four Quadrant Power Supply Using PWM Controller (PWM 제어기를 사용한 4상한 전원공급기)

  • Kim, Y.S.;Lee, S.K.;Ha, Ki-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.310-313
    • /
    • 2005
  • In this paper, four quadrant CBPS(Compact Bipolar Power Supply) which development and study using universal PWM controller. The CBPS has 24V DC-link voltage, +/-5A output current, 50kHz switching frequency and 30Hz full load bandwidth using FET device. Proposed system has two independent PWM controllers for each full-bridge switch leg drive and PI control loops for current regulations. It is shown experimental results that good step response of the current output.

  • PDF