• Title/Summary/Keyword: Power circuit design

Search Result 2,260, Processing Time 0.028 seconds

Analysis and optimization of Wiel-Dobke synthetic testing circuit parameters (Weil-Dobke 합성단락 시험회로의 Parameter 분석과 최적화)

  • Kim, Maeng-Hyun;Rhyou, Hyeong-Kee;Park, Jong-Wha;Koh, Hee-Seog
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.623-627
    • /
    • 1995
  • This paper describes analysis and optimization of Weil-Dobke synthetic testing circuit parameters, which is efficient and economical test method in high capacity AC circuit breaker. In this paper, analysis of synthetic short-circuit test circuit parameter proposed nondimensional factor that is reciprocal comparison value of circuit parameter and is not related to rated of circuit breaker, in particular, this study induce minimization of required energy of critical TRV generation specified in IEC 56 standards and present optimal design of synthetic short circuit testing facilities.

  • PDF

Power Factor Correction Circuit For Inverter Air-Conditioner With A Parallel Configuration To Reduce The Material Cost (재료비 절감을 위한 병렬구조를 갖는 인버터 에어컨용 역률제어회로)

  • 정용채;정윤철;권경안
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.122-127
    • /
    • 1999
  • In this paper, the power factor correction circuit using a parallel drive method is proposed so that the high power inverter air-conditioner with 3[hp] compressor motor may obtain the cost down and the improved performance. The adequate design porcedures are presented to reduce the material costs by eliminating the power factor imprving LC filter and derating output capacitor and inverter switches. Using the determined components. the proto-type circuit with 6[kW] power consumption is built and tested to verify the operation of the proposed circuit.

  • PDF

A Resonant Circuit Design of the Inverter for Induction Heating by Analysis of the Coupling Coefficient (결합계수 해석에 의한 유도가열용 인버터의 공진회로 설계법)

  • 이광직;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.90-95
    • /
    • 1997
  • In designing a resonant circuit of the inverter which puts induction heating with high frequency to the load, an inductance L of the circuit, the coupling coefficient of a transformer transfering the output power to load, and the coupling coefficient of load circuit heating with coil affect to the output power of a resonant circuit, the circuit Q and the frequency. Those characteristics of the circuit are analyzed through Thevenan's equivalent circuit of the coupling coefficient type which is derived from the T-type equivalent circuit of a transformer. On this equivalent circuit, the impedance of a transformer referred to its primary side is not only proportional the square of turn ratio, nZ, but also the square of coupling coefficient, K2 This paper proposed a more accurate fundamental method to design a resonant circuit of the inverter by using the Thevenan's equivalent circuit.

  • PDF

CMOS Single Supply Op Amp IC Layout Design (CMOS 단일 전원 OP AMP IC 레이아웃 설계)

  • Jarng, Sun-Suk;Kim, Yu-Ri-Ae
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.909-912
    • /
    • 2005
  • According to miniaturization trend of rehabilitation medical equipment such as hearing aid, study to replace previous complex system with semiconductor SOC (System-on-Chip) chip becomes lively. In this study, after investigating of existent hearing aid performance in circuit design approach, low electric power consuming, single power supply (1.4V battery) CMOSS OP AMP was designed. Analog circuit design tools such as Hspice and Cadence were used for circuit simulation and implementing layout design. This study shows technical methods particularly for layout design. The work is done in pmos and nmos active element layout design in addition to passive element design such as resister, capacitor and inductor.

  • PDF

Design of Low Power OLED Driving Circuit (저소비 전력 OLED 디스플레이 구동 회로 설계)

  • 신홍재;이재선;최성욱;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.919-922
    • /
    • 2003
  • This paper presents a novel low power driving circuit for passive matrix organic lighting emitting diodes (OLED) displays. The proposed driving method for a low power OLED driving circuit which reduce large parasitic capacitance in OLED panel only use current driving method, instead of mixed mode driving method which uses voltage pre-charge technique. The driving circuit is implemented to one chip using 0.35${\mu}{\textrm}{m}$ CMOS process with 18V high voltage devices and it is applicable to 96(R.G.B)X64, 65K color OLED displays for mobile phone application. The maximum switching power dissipation of driving power dissipation is 5.7mW and it is 4% of that of the conventional driving circuit.

  • PDF

A Novel AC Solid-State Circuit Breaker with Reclosing and Rebreaking Capability

  • Kim, Jin-Young;Choi, Seung-Soo;Kim, In-Dong
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1074-1084
    • /
    • 2015
  • These days, the widespread use of sensitive loads and distributed generators makes the solid-state circuit breaker (SSCB) an essential component in power circuits to achieve a high power quality for AC Grids. In traditional AC SSCB using SCRs, some auxiliary mechanical devices are required to make the reclosing operation possible before fault recovery. However, the proposed AC SSCB can break quickly and then be reclosed without auxiliary mechanical devices even during the short-circuit fault. Moreover, its fault current breaking time is short and its SSCB reclosing operation is fast. This results in a reduction of the economic losses due to fault currents and power outages. Through simulations and experiments on short-circuit faults, the performance characteristics of the proposed AC SSCB are verified. A design guideline is also suggested to apply the proposed AC SSCB to various AC grids.

Design and Analysis of Power Circuit Breaker Mechanism Based on the Dynamic Model (동적모델에 기반한 고압회로차단기의 설계 및 해석)

  • Kwon, B.H.;Ahn, K.Y.;Oh, I.S.;Seo, J.M.;Kim, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.476-481
    • /
    • 2001
  • In this paper, based on the developed dynamic model of a vacuum circuit breaker mechanism, the development of the new circuit breaker with less energy mechanism is focused. The energy flow analysis of the original mechanism is carried out to show where the elastic potential energies of pre-loaded springs are transmitted. Through energy flow analysis, the concept design of the new circuit breaker with less energy mechanism is proposed, and then the detailed design is carried out through the design process based on the verified dynamic model. Comparing simulation results with experiment using a high-speed camera, the appropriateness of the proposed design procedures for the rapid circuit breaker mechanism is shown.

  • PDF

Design of High Efficiency Switching Mode Class E Power Amplifier and Transmitter for 2.45 GHz ISM Band (2.45 GHz ISM대역 고효율 스위칭모드 E급 전력증폭기 및 송신부 설계)

  • Go, Seok-Hyeon;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • A power amplifier of 2.4 GHz ISM band is designed to implement a transmitter system. High efficiency amplifiers can be implemented as class E or class F amplifiers. This study has designed a 20 W high efficiency class E amplifier that has simple circuit structure in order to utilize for the ISM band application. The impedance matching circuit was designed by class E design theory and circuit simulation. The designed amplifier has the output power of 44.2 dBm and the power added efficiency of 69% at 2.45 GHz. In order to apply 30 dBm input power to the designed power amplifier, voltage controlled oscillator (VCO) and driving amplifier have been fabricated for the input feeding circuit. The measurement of the power amplifier shows 43.2 dBm output and 65% power added efficiency. This study can be applied to the design of power amplifiers for various wireless communication systems such as wireless power transfer, radio jamming device and high power transmitter.

Design of a CMOS Programmable Slew Rate Operational Amplifier with a Switched Parallel Current Subtraction Circuit (병렬전류감산기를 이용한 슬루율 가변 연산증폭기 설계)

  • 신종민;윤광섭
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.730-736
    • /
    • 1995
  • This paper presents the design of a CMOS programmable slew rate operational amplifier based upon a newly proposed concept, that is a switched parallel current subtraction circuit with adaptive biasing technique. By utilizing the newly designed circuit, it was proven that slew rate was linearly controlled and power dissipation was optimized. If the programmable slew rate amplifier is employed into mixed signal system, it can furnish the convenience of timing control and optimized power dissipation. Simulated data showed the slew rate ranging from 5. 83V/$\mu$s to 41.4V/$\mu$s, power dissipation ranging from 1.13mW to 4.1mW, and the other circuit performance parameters were proven to be comparable with those of a conventional operational amplifier.

  • PDF

A Compact Low-Power Shunt Proximity Touch Sensor and Readout for Haptic Function

  • Lee, Yong-Min;Lee, Kye-Shin;Jeong, Taikyeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.380-386
    • /
    • 2016
  • This paper presents a compact and low-power on-chip touch sensor and readout circuit using shunt proximity touch sensor and its design scheme. In the proposed touch sensor readout circuit, the touch panel condition depending on the proximity of the finger is directly converted into the corresponding voltage level without additional signal conditioning procedures. Furthermore, the additional circuitry including the comparator and the flip-flop does not consume any static current, which leads to a low-power design scheme. A new prototype touch sensor readout integrated circuit was fabricated using complementally metal oxide silicon (CMOS) $0.18{\mu}m$ technology with core area of $0.032mm^2$ and total current of $125{\mu}A$. Our measurement result shows that an actual 10.4 inches capacitive type touch screen panel (TSP) can detect the finger size from 0 to 1.52 mm, sharply.