• Title/Summary/Keyword: Power arc test

Search Result 121, Processing Time 0.032 seconds

Arc-Extinguishing Characteristics of A Rotary-Arc Gas Circuit Breaker (자력소호 가스차단부의 소호특성)

  • Shin, Young-June;Park, Kyong-Yop;Song, Ki-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1593-1598
    • /
    • 1994
  • Recently rotary-arc, thermal expansion and their composite interrupters are widely used in the distribution power system because they have lots of advantages in making the larger interrupting capacity, the smaller size, the lighter weight and the less surge. A model interrupter of rotary-arc type, which has constant stroke and thermal expansion volume, was studied by varying the design parameters, i.e. the number of turns of the driving coil, the inner diameter of the moving contact, the gas pressure and the shape of the fixed contact for this project. Short cicuit current interrupting tests were conducted to the model interrupters by varying the requirements from 42% to 175% of the test voltage, interrupting current and transient recovery voltage for the test duty No.4 of 7.2kV 12.5kA single phase test. The pressure rise, minimum and maximum arcing times were analyzed for each model interrupter. All types of model interrupters showed good interrupting performances and sufficient design margins for the ratings.

  • PDF

Diagnostic Technique of a Switchboard by Frequency Analysis of Radiated Electromagnetic Wave (방사전자파의 주파수분석에 의한 배전반 진단기술)

  • Park, Dae-Won;Kim, Sun-Jae;Jung, Kwang-Seok;Kil, Gyung-Suk;Jo, Eun-Je
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.41-45
    • /
    • 2010
  • In this paper, we analyzed the frequency spectrum of radiated electromagnetic waves generated by series arc- and corona- discharges as a basic study to develop an online diagnostic technique for power facilities installed inside switchboards. To simulate corona and series arc discharges, an arc generator specified in UL1699 and a corona generator were fabricated. The experiment was carried out in an electromagnetic shielding room, and the measurement system consists of an Ultra Log Antenna and an EMI Test Receiver. The frequency spectrum exists in ranges from 30 to 500 [MHz] for series arc discharge and 30 [MHz] to 2 [GHz] depending on defects for corona discharge. The peak frequency of series arc discharge and corona were 40 [MHz], 80 [MHz] and 35 [MHz]~160 [MHz], respectively.

  • PDF

A Three-Phase 618 Structure SRM (3상 6/8극 SRM)

  • Lee Ju-Hyun;Lee Dong-Hee;Chen Hao;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.254-258
    • /
    • 2004
  • A three-phase 6/8 structure SRM (switched reluctance motor), the design and analysis of the motor are described. The range of the stator pole arc factor and the rotor pole arc factor of the motor are analyzed in the linear region. The optimum range of the stator pole arc factor and the turn-off angle of the main switches in the power converter are given with the 2-D finite element electro-magnetic field calculation of the motor and the nonlinear simulation. Test results of the prototype developed are discussed.

  • PDF

Development of DC Circuit Breaker using Magnet Arc Extinguisher (자기적 아크소호 기법을 이용한 직류 차단기 개발)

  • Lee, Sung-Min;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • In recent years, DC distribution systems are becoming hot issue due to the increase in digital loads and DC generation systems according to the expansion of renewable energy technologies. However, removing the fault current in DC grids is comparably difficult since the current in DC grids has no zero-crossing point like in AC grids. Thus, developing dedicated DC circuit breakers for DC grids is necessary to get safety for people and electrical facilities. This paper proposes magnet arc extinguishing method to develop a 300[$V_{DC}$]/10[A] DC circuit breaker. The performance of the proposed DC circuit breaker was verified by an experimental circuit breaker test system built in this research.

Influence of processing parameters for adhesion strength of TiN films prepared by AIP technique

  • Fang, W.;Ju, Yun-Gon;Jo, Dong-Yul;Yun, Jae-Hong;Song, Gi-O;Zhang, S.H.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.140-141
    • /
    • 2007
  • The arc ion plating (AIP) technique has been used widely for thin coating in the area of surface engineering. The TiN coating is important in the field of dies, cutting tools and other mechanical parts. When forming the TiN films by AIP technique, the processing parameters such as arc power, bias voltage, working pressure, temperature of substrate and pre-treatment affected the adhesion respectively. The results of scratch test revealed that the adhesion strength was influenced by arc power most strongly. And a sequence of the importance of each parameters has been obtained. The crystal structure and cross-section of TiN films are also be investigated.

  • PDF

Development of a low energy ion irradiation system for erosion test of first mirror in fusion devices

  • Kihyun Lee;YoungHwa An;Bongki Jung;Boseong Kim;Yoo kwan Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.70-77
    • /
    • 2024
  • A low energy ion irradiation system based on the deuterium arc ion source with a high perveance of 1 µP for a single extraction aperture has been successfully developed for the investigation of ion irradiation on plasma-facing components including the first mirror of plasma optical diagnostics system. Under the optimum operating condition for mirror testing, the ion source has a beam energy of 200 eV and a current density of 3.7 mA/cm2. The ion source comprises a magnetic cusp-type plasma source, an extraction system, a target system with a Faraday cup, and a power supply control system to ensure stable long time operation. Operation parameters of plasma source such as pressure, filament current, and arc power with D2 discharge gas were optimized for beam extraction by measuring plasma parameters with a Langmuir probe. The diode electrode extraction system was designed by IGUN simulation to optimize for 1 µP perveance. It was successfully demonstrated that the ion beam current of ~4 mA can be extracted through the 10 mm aperture from the developed ion source. The target system with the Faraday cup is also developed to measure the beam current. With the assistance of the power control system, ion beams are extracted while maintaining a consistent arc power for more than 10 min of continuous operation.

Design and Analysis of Direct-Coupled, Small-Scaled Permanent Magnet Generator for Wind Power Application (풍력발전을 위한 소용량 영구자석형 동기발전기의 설계 및 해석)

  • Kim, Il-Jung;Choi, Jang-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.39-51
    • /
    • 2014
  • This paper deals with design of a direct-coupled, small-scaled permanent magnet generator (PMG) for wind power application. First, this paper determines rated power and speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit including slot opening, teeth width and yoke thickness is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot considering winding packing factor. Finally, finite element (FE) method is employed in analyzing the details of the designed PMG and, test results such as back-emf measurements are given to confirm the design.

HIGH SPEED VARIABLE SQUARE WAVE AC SUBMERGED ARC WELDING -FREQUENCY/BALANCE STUDY .250″ PLAIN CARBON STEEL

  • Reynolds, Jon-O;Sean P. Moran
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • Advancements in silicon phase control (SCR) technologies provide an arc welding power supply that has the capability to allow the alteration of the Alternating Current (AC) welding output. These technologies provide a square wave output involving sixteen frequency selections and multiple balance selections. While an AC out put is known to minimize magnetic disturbances associate with Direct Current (DC), the potentials of a non-sinusoidal waveform have not been explored. The focus of the paper is to determine the effects that the frequency and balance of an AC wave form output will have upon a high speed Submerge Arc (SAW) application. The test matrix of the project includes welding .250" steel plate. Joint type is square groove with a travel speed of 65 IPM. Each of the weld parameters was held constant, only the frequency and/or balance were altered between welds. Each frequency/balance combination involved three-gap spacing. Upon completion of the welds the bead profiles were measured and recorded. A relationships/trends were observed with various frequency and balance values. Optimum frequency and balance values were found for the .250" square groove application which permit consistent weld sizing, ease of slag removal, and minimal plate distortion.

  • PDF

Evaluation of Material Characteristics of Suspension-Type Porcelain Insulators for 154 KV Power Transmission Lines

  • Choi, In-Hyuk;Park, Joon-Young;Kim, Tae-gyun;Yoon, Yong-Beum;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.207-210
    • /
    • 2017
  • The suspension arrangement of insulators provides flexibility and assists in power transmission in transmission lines. The performance of the insulator string is strongly influenced by the environmental conditions to which it is exposed, its shape and the inherent material properties of suspension-type insulators. The suspension-type insulators are mostly made from glass, porcelain and ceramic material due to their high resistivity. Irregularity in charge distribution throughout the porcelain insulator may lead to accelerated aging and electrical breakdown. A very high and steep lightning impulse voltage may also cause breakdown of suspension-type insulators. We investigated various material characteristics such as alumina addition, surface morphology, x-ray diffraction pattern and relative density of suspension porcelain insulators manufactured in 1989 (36,000 lbs.), 1995 (36,000 lbs.) and 2001 (36,000 lbs.) by the KRI Company for use in 154 kV high power transmission lines. We compared the material characteristics of these porcelain insulators with that of the top-of-the-line porcelain insulators (36,000 lbs.) manufactured by the NGK Company in 2000. These suspension-type porcelain insulators were exposed to arc and flashover tests to examine their electrical and mechanical strength. It was noted that alumina addition (17 wt.%) for K-2001 was one of the major contributors to the enhancement of the performance of the porcelain insulators and to their ability to withstand very high current generation during the arc test. The porcelain insulators manufactured during 2001 also showed the highest relative density of 95.8% as compared to the other insulators manufactured in 1989 and 1995 respectively 94.2% and 91.5%. We also discuss reports of various failure modes of suspension-type porcelain insulators.

Experimental Results of New Ion Source for Performance Test

  • Kim, Tae-Seong;Jeong, Seung-Ho;Jang, Du-Hui;Lee, Gwang-Won;In, Sang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.269-269
    • /
    • 2012
  • A new ion source has been designed, fabricated, and installed at the NBTS (Neutral Beam Test Stand) at the KAERI (Korea Atomic Energy Research Institute) site. The goalis to provide a 100 keV, 2MW deuterium neutral beam injection as an auxiliary heating of KSTAR (Korea Super Tokamak Advanced Research). To cope with power demand, an ion current of 50 A is required considering the beam power loss and neutralization efficiency. The new ion source consists of a magnetic cusp bucket plasma generator and a set of tetrode accelerators with circular copper apertures. The plasma generator for the new ion source has the same design concept as the modified JAEA multi-cusp plasma generator for the KSTAR prototype ion source. The dimensions of the plasma generator are a cross section of $59{\times}25cm^2$ with a 32.5 cm depth. The anode has azimuthal arrays of Nd-Fe permanent magnets (3.4 kG at surface) in the bucket and an electron dump, which makes 9 cusp lines including the electron dump. The discharge properties were investigated preliminarily to enhance the efficiency of the beam extraction. The discharge of the new ion source was mainly controlled by a constant power mode of operation. The discharge of the plasma generator was initiated by the support of primary electrons emitted from the cathode, consisting of 12 tungsten filaments with a hair-pin type (diameter = 2.0 mm). The arc discharge of the new ion source was achieved easily up to an arc power of 80 kW (80 V/1000 A) with hydrogen gas. The 80 kW capacity seems sufficient for the arc power supply to attain the goal of arc efficiency (beam extracted current/discharge input power = 0.8 A/kW). The accelerator of the new ion source consists of four grids: plasma grid (G1), gradient grid (G2), suppressor grid (G3), and ground grid (G4). Each grid has 280 EA circular apertures. The performance tests of the new ion source accelerator were also finished including accelerator conditioning. A hydrogen ion beam was successfully extracted up to 100 keV /60 A. The optimum perveance is defined where the beam divergence is at a minimum was also investigated experimentally. The optimum hydrogen beam perveance is over $2.3{\mu}P$ at 60 keV, and the beam divergence angle is below $1.0^{\circ}$. Thus, the new ion source is expected to be capable of extracting more than a 5 MW deuterium ion beam power at 100 keV. This ion source can deliver ~2 MW of neutral beam power to KSTAR tokamak plasma for the 2012 campaign.

  • PDF