• Title/Summary/Keyword: Power System Education

Search Result 695, Processing Time 0.024 seconds

Development of an Interactive Graphic Software for the Education and Training of Power System Operation and Control (전력계통 운용 및 제어에 대한 교육 및 훈련용 대화식 그래픽 소프트웨어 개발)

  • Shin, Joong-Rin;Lee, Wook-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.932-940
    • /
    • 1999
  • This paper discusses the development of an interactive and graphic software for the education and training of power system operation and control, especially for students and beginners. This software has a lot of functions for users to simulate the power system operation and control with ease. These functions included in this software are followings. First, this software includes a Graphic User Interface (GUI) - which contains interactive simulation scheme, Windows dialog box, graphic representations, and graphic icons - so that users can handle the software in user-friendly environments. Second, it uses a graphic editor so that users can easily edit the one-line diagram of the power system. Third, it prepares a database system so that users can manage the power system data for simulation easily. Fourth, the application modules included in the software are the Economic Dispatch (ED) and the Automatic Load-Frequency Control (ALFC). These application modules are designed as independent modules. Using the ED module, users can understand the basic concepts of the ED with ease. And using the ALFC module, they can easily acquire the basic understanding of the response of the ALFC between the two-area systems. The proposed software is tested on both the 16 bus and the two-area sample system. The test has confirmed the functions of the developed software. It is anticipated that the software will be useful for the education and training of power system operation and control for the power engineering study at university or for the training of the beginner at power industry.

  • PDF

Development of Education and Training System for the Auto-Reclosing of Power Transmission System Using a Real Time Digital Simulator (실시간 계통시뮬레이터를 이용한 송전계통 자동재폐로 교육 및 훈련 시스템 개발)

  • Park, Jong-Chan;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • This paper summarizes an education and training system for the auto-reclosing of power transmission system using a real time digital simulator. The system is developed to understand the principle of reclosing and the sequence of automatic reclosing schemes, and practice the effects of reclosing actions to power system in real-time simulator. This study is concentrated into the following two parts. One is the development of real time education and training system of automatic reclosing schemes. For this, we use the RTDS(real time digital simulator) and the actual digital protective relay. The mathematical relay model of RTDS and the actual distance relay which is equipped automatic reclosing function are also used. The other is the user friendly interface between trainee and trainer. The various interface displays are used for user handing and result display. The conditions of automatic reclosing which is a number of reclosing, reclosing dead time, reset time, and so on, can be changed by the user interface panel. A number of scenario cases are reserved for the education and training. Through the test, we verified that the proposed system can be effectively used to accomplish the education and training of automatic reclosing.

A Study on an Evaluation Modeling of Power System Performance for Frequency Regulation ESS Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 주파수조정용 ESS의 계통영향성 평가 모델링에 관한 연구)

  • Choi, Sung-Sik;Kang, Min-Kwan;Lee, Hu-Dong;Nam, Yang-Hyun;Park, Ji-Hyun;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1024-1030
    • /
    • 2018
  • Recently, the large scaled energy storage system(ESS) which has various functions such as peak saving, demand management, output stabilization of renewable energy and frequency regulation(FR) is being energetically installed and operated. Especially, as the use case of frequency regulation ESS, the KEPCO has demonstrated the total of 376[MW] ESS since 2014. However, there are no operational experiences and international technical standards on frequency regulation application in ESS. Therefore, this paper propose the evaluation algorithm for power system performance of ESS by considering the frequency characteristics between governor of existing generator and frequency regulation ESS, in order to verify the power system performance of ESS. And also, this paper propose an evaluation modeling for small scaled power system including the existing generator, frequency control ESS and customer loads based on the PSCAD/EMTDC S/W. From the simulation results in 360[MW] model power system, it is confirmed that frequency regulation ESS has better performances than conventional generators.

Development of a Multiple SMPS System Controlling Variable Load Based on Wireless Network

  • Ko, Junho;Park, Chul-Won;Kim, Yoon Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1221-1226
    • /
    • 2015
  • This paper proposes a multiple switch mode power supply (SMPS) system based on the wireless network which controls variable load. The system enables power supply of up to 600W using 200W SMPS as a unit module and provides a controlling function of output power based on variable load and a monitoring function based on wireless network. The controlling function for output power measures the variation of output power and facilitates efficient power supply by controlling output power based on the measured variation value. The monitoring function guarantees a stable power supply by observing the multiple SMPS system in real time via wireless network. The performance of the proposed system was examined by various experiments. In addition, it was verified through standardized test of Korea Testing Certification. The results were given and discussed.

Smart Solar Control System: Based on the Low-Power Control of Arduino Board (지능형 태양광 전력 관리 시스템 (아두이노 저전력 제어를 중심으로))

  • Kwon, Oh-Sung
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.5
    • /
    • pp.461-467
    • /
    • 2019
  • As the convergence solutions become more common, the use of Arduino and Raspberry Pi boards has been increasing. These control boards has to be executed under power blackout. In this environment, we take advantage of solar power system to overcome the power out. In this paper, we poposed a effficient power control strategy. Our experimental device is a DSLR shooting device executed based a predesigned interval time. The control module of our experimental device is the compound system of Raspberry Pi and Arduino boards. Arduino board send the force signals to wake up Raspberry Pi. We developed a new control strategy algorithm for the efficient use of solar power energy. In this paper, we mesured the efficiency of solar enery consuming of our system. We programmed a control system to send DSLR shooting signals. In experimentals, we ensured a stable consuming of electricity during 10 days. In the end, it was found that the consumption power of the Raspberry was reduced by about 81% when the Aduino was combined to save power.

Study on Education of Power Electronics Engineering in Undergraduate Course focusing Experiments and simulation (실험실습을 강화한 학부과정에서의 전력전자공학 교육에 관한 연구)

  • Ji Jun-Keun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.639-642
    • /
    • 2002
  • In this paper the method which can intensify effect of education and experiment in the subject of power electronics Is Introduced. Besides theoretical lectures by textbook during 3 hours a week, students can out the simulation and experiment using PSIM, special simulation program for power electronics, and 'Power Electronics Training System', experimental equipments of Lab-Volt Ltd. for power electronics, and 'Data Acquisition & Management System' Thus students can have profound understandings and experiences about various practical situations.

  • PDF

Probabilistic Load Flow for Power Systems with Wind Power Considering the Multi-time Scale Dispatching Strategy

  • Qin, Chao;Yu, Yixin;Zeng, Yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1494-1503
    • /
    • 2018
  • This paper proposes a novel probabilistic load flow model for power systems integrated with large-scale wind power, which considers the multi-time scale dispatching features. The ramp limitations of the units and the steady-state security constraints of the network have been comprehensively considered for the entire duration of the study period; thus, the coupling of the system operation states at different time sections has been taken into account. For each time section, the automatic generation control (AGC) strategy is considered, and all variations associated with the wind power and loads are compensated by all AGC units. Cumulants and the Gram-Charlier expansion are used to solve the proposed model. The effectiveness of the proposed method is validated using the modified IEEE RTS 24-bus system and the modified IEEE 118-bus system.

Development of Practical Convergence Education by Construction of the Wind Power System Using the Wind by Car (차량주행풍을 이용한 풍력발전 시스템 구축을 통한 실무 융합 교육 개발)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.107-112
    • /
    • 2014
  • The research goals of this study using the wind by car as replaceable energy are summarized to three things as follows. The first goal is to secure a replaceable energy source of environmental conveniency through the wind power system by the wind by car. The second goal is to develop a educational program for related convergence professional man. The third goal is to make a wind power system for a replaceable energy education. We have performed for obtaining a research goal during six months. So, we concluded three results as follows. The system for doing a wind by car is modeled. New convergence educational program for department of electrical, electronic, mechanical engineering is developed under this system. And, the wind power system is produced for practice education of demonstration for replaceable energy.

Design and Implementation of the frequency Monitoring System for the Small AC Generator (소형 AC 발전기의 주파수 모니터링 시스템 설계 및 구현)

  • Park, Ji-sang;Jeon, Min-ho;Lee, Myung-eui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.997-999
    • /
    • 2013
  • In this paper, the frequency monitoring system for the small AC generator having two or more generator is designed and implemented to synchronize a voltage, phase and frequency for stable power supply. CT sensor is used to measure the amount of current flowing in the power line, and PT sensor is used to measure the amount of voltage across the power line. The experimental results show that the power frequency can be measured using the power frequency monitoring system developed in this paper. The frequency monitoring system proposed in this paper will be able to control the power generation system using two or more small generator efficiently.

  • PDF

Optimal Energy-Efficient Power Allocation and Outage Performance Analysis for Cognitive Multi-Antenna Relay Network Using Physical-Layer Network Coding

  • Liu, Jia;Zhu, Ying;Kang, GuiXia;Zhang, YiFan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3018-3036
    • /
    • 2013
  • In this paper, we investigate power allocation scheme and outage performance for a physical-layer network coding (PNC) relay based secondary user (SU) communication in cognitive multi-antenna relay networks (CMRNs), in which two secondary transceivers exchange their information via a multi-antenna relay using PNC protocol. We propose an optimal energy-efficient power allocation (OE-PA) scheme to minimize total energy consumption per bit under the sum rate constraint and interference power threshold (IPT) constraints. A closed-form solution for optimal allocation of transmit power among the SU nodes, as well as the outage probability of the cognitive relay system, are then derived analytically and confirmed by numerical results. Numerical simulations demonstrate the PNC protocol has superiority in energy efficiency performance over conventional direct transmission protocol and Four-Time-Slot (4TS) Decode-and-Forward (DF) relay protocol, and the proposed system has the optimal outage performance when the relay is located at the center of two secondary transceivers.