• Title/Summary/Keyword: Power System Dynamic Stability

Search Result 353, Processing Time 0.033 seconds

Study on Calculation of Dynamic Penetration Limit of WTG and Applications of BESS in Power Systems (풍력발전의 전력계통 동적 수용한계 산정 및 BESS 적용방안 분석)

  • Gwon, Han Na;Choi, Woo Yeong;Kook, Kyugn Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.29-32
    • /
    • 2015
  • Since the characteristics of Renewable Energy Sources like wind turbine generators are very different from those of existing thermal power generators and their response to the sudden change of the frequency are not as good as that from thermal power generators. Especially when the penetration level of the wind power generation is substantially high, the output from the WTG would be possibly limited to keep the stability of power systems. For this, this paper implements the process for calculating the dynamic penetration limit of WTG and analyze the potential application of BESS for increasing the dynamic penetration limit of WTG.

A Study on the Power System Control and Monitoring Technique Using CAN (CAN을 이용한 발전계통의 제어 및 모니터링 기법 연구)

  • Jung, Joon-Hong;Choi, Soo-Young;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.268-276
    • /
    • 2003
  • In this paper, we present a new control and monitoring technique for a power system using CAN(Controller Area Network). Feedback control systems having co'ntrol loops closed through a network(i.e. Ethernet, ControlNet, CAN) are called NCSs(Networked Control Systems). The major problem of NCSs is the variation of stability property according to time delay including network-induced delay and computation delay in nodes. We present a new stability analysis method of NCSs with time delay exploiting a state-space model of LTI(Linear Time Invariant) interconnected systems. The proposed method can determine a proper sampling period of NCSs that preserves stability performance even in NCSs with a dynamic controller. We design CAN nodes which can transmit control and monitoring data through CAN bus and apply these to NCSs for a power system. The results of the experiment validate effectiveness of our control and monitoring technique for a power system.

Control Strategy of Smoothing Arc for DC Arc Furnace

  • Jung, Kyungsub;Suh, Yongsug;Lee, Yongjoong;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.354-355
    • /
    • 2013
  • Fundamental features of the arc stability in DC arc furnace of 720V/100kA/72MW have been investigated. Cassie-Mayr arc model has been employed and applied for the target dc arc furnace. In order to characterize the parameters of Cassie-Mayr arc model and the behavior of unstable arc dynamics, the advanced arc simulations of magneto-hydrodynamics (MHD) has been performed. The MHD based arc simulation has been validated in the subcomponent level, for the free burning arc set up in the laboratory. From the results of MHD simulation, dc arc dynamic resistance is proposed to be an effective arc stability function reflecting the instability of dynamic arc behavior. The experimental result confirms the usefulness of proposed dynamic arc resistance as arc stability function. The proposed arc stability function can be regarded as an effective criterion for the overall power conversion system to maintain highly stable arcing operation leading to better productivity and reliability.

  • PDF

Development of Dynamic Simulation Algorithm of UPFC (UPFC의 동적 시뮬레이션 알고리즘 개발)

  • Son, K.M.;Kim, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.226-228
    • /
    • 1999
  • This paper presents a dynamic simulation algorithm for studying the effect of Unified Power Flow Controller(UPFC) on the low frequency power system oscillations and transient stability studies. The algorithm is a Newton-type one and gives a fast convergence characteristics. The algorithm is applied to inter-area power oscillation damping regulator design of a sample two-area power system. The results show that UPFC is very effective for damping inter-area oscillations.

  • PDF

Designing an Emotional Intelligent Controller for IPFC to Improve the Transient Stability Based on Energy Function

  • Jafari, Ehsan;Marjanian, Ali;Solaymani, Soodabeh;Shahgholian, Ghazanfar
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.478-489
    • /
    • 2013
  • The controllability and stability of power systems can be increased by Flexible AC Transmission Devices (FACTs). One of the FACTs devices is Interline Power-Flow Controller (IPFC) by which the voltage stability, dynamic stability and transient stability of power systems can be improved. In the present paper, the convenient operation and control of IPFC for transient stability improvement are considered. Considering that the system's Lyapunov energy function is a relevant tool to study the stability affair. IPFC energy function optimization has been used in order to access the maximum of transient stability margin. In order to control IPFC, a Brain Emotional Learning Based Intelligent Controller (BELBIC) and PI controller have been used. The utilization of the new controller is based on the emotion-processing mechanism in the brain and is essentially an action selection, which is based on sensory inputs and emotional cues. This intelligent control is based on the limbic system of the mammalian brain. Simulation confirms the ability of BELBIC controller compared with conventional PI controller. The designing results have been studied by the simulation of a single-machine system with infinite bus (SMIB) and another standard 9-buses system (Anderson and Fouad, 1977).

Development of Composite Load Models of Power Systems using On-line Measurement Data

  • Choi Byoung-Kon;Chiang Hsiao Dong;Li Yinhong;Chen Yung Tien;Huang Der Hua;Lauby Mark G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.161-169
    • /
    • 2006
  • Load representation has a significant impact on power system analysis and control results. In this paper, composite load models are developed based on on-line measurement data from a practical power system. Three types of static-dynamic load models are derived: general ZIP-induction motor model, Exponential-induction motor model and Z-induction motor model. For the dynamic induction motor model, two different third-order induction motor models are studied. The performances in modeling real and reactive power behaviors by composite load models are compared with other dynamic load models in terms of relative mismatch error. In addition, numerical consideration of ill-conditioned parameters is addressed based on trajectory sensitivity. Numerical studies indicate that the developed composite load models can accurately capture the dynamic behaviors of loads during disturbance.

Transient Stability Enhancement of Power System by Using Energy Storage System (풍력터빈 발전기가 연계된 전력계통에서 에너지저장시스템이 과도안정도에 미치는 영향)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.592-597
    • /
    • 2019
  • A conventional method to improve transient stability in power system is the use of reactive power compensation devices such as STATCOM and SVC. However, this traditional method cannot prevent a rapid voltage collapse brought on by motors stalling due to system fault. On the other hand, ESS(Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast active power compensation with energy storage system plays a significant role in transient stability enhancement after a major fault of power system. In this paper, transient stability enhancement method by using energy storage system is proposed for the power system including a dynamic load such as large motor. The effectiveness of energy storage system compared to conventional devices in enhancing transient stability of power system is presented. The results of simulations show that the simultaneous injection of active and reactive power can enhance more effectively transient stability.

The Analysis and Evaluation of the Disturbances and Controller Effects to Power System Dynamic Voltage Stability Design and Control (동적전압붕괴에 대한 외란의 영향평가 및 제어기기 적용 효과 분석)

  • Lee, Geun-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.1
    • /
    • pp.6-12
    • /
    • 2000
  • This paper presents various processes of dynamic voltage collapse which is initiated by various power system disturbances, and the impacts of dynamic voltage controllers. According to the analysis results, the composition of induction motors with short time constants affects the voltage collapse strongly. Also, it is proved that the addition of fast acting reactive compensation devices, such as SVC, at high reactive loss sensitivity($$\delta$$Q$$_luss/\delta$$P$$_L$$) buses could be one of the best countermeasure to escape the voltage collapse.

  • PDF

DYNAMIC VOLTAGE COLLAPSE ANALYZED BY INDUCTION MOTOR MODEL II (유도기모델을 사용한 동적 전압 안정도 해석II)

  • Kim, Y.B.;Kim, Geon-Jung;Kim, Won-Gyeom;Jeong, Tae-Ho;Chu, Jin-Bu;Lee, Sang-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.171-173
    • /
    • 1993
  • This paper deals with a methodology of the dynamic voltage stability analysis. The several physical power system constraints e.q upper and lower lomit of SVC and OLTC are considered. The proposed equivalent load model is the combination induction motor and impedance load. The variation of System voltages and equivalent induction motor slips for actual power systems are simulated and plotted in this paper.

  • PDF

Transient Stability Enhancement of Power System by Using Energy Storage System (에너지저장시스템을 이용한 전력계통의 과도안정도 향상)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.26-31
    • /
    • 2017
  • The conventional method of improving the transient stability in a power system is the use of reactive power compensation devices, such as the STATCOM and SVC. However, this traditional method cannot prevent the rapid voltage collapse brought about by the stalling of the motor due to a system fault. On the other hand, the ESS (Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast-acting power compensation provided by an energy storage system plays a significant role in enhancing the transient stability after a major fault in the power system. In this paper, a method of enhancing the transient stability using an energy storage system is proposed for power systems including a dynamic load, such as a large motor. The effectiveness of the energy storage system compared to conventional devices in enhancing the transient stability of the power system is presented. The results of the simulations show that the simultaneous injection of active and reactive power can enhance the transient stability more effectively.