Journal of Electrical Engineering & Technology, Vol. 1, No. 2, pp. 161~169, 2006 161

Development of Composite Load Models of Power Systems using
On-line Measurement Data

Byoung-Kon Choi*, Hsiao-Dong Chiang*, Yinhong Li*, Yung-Tien Chen**
Der-Hua Huang*** and Mark G. Lauby***

Abstract - Load representation has a significant impact on power system analysis and control results.
In this paper, composite load models are developed based on on-line measurement data from a
practical power system. Three types of static-dynamic load models are derived: general ZIP-induction
motor model, Exponential-induction motor model and Z-induction motor model. For the dynamic
induction motor model, two different third-order induction motor models are studied. The
performances in modeling real and reactive power behaviors by composite load models are compared
with other dynamic load models in terms of relative mismatch error. In addition, numerical
consideration of ill-conditioned parameters is addressed based on trajectory sensitivity. Numerical
studies indicate that the developed composite load models can accurately capture the dynamic

behaviors of loads during disturbance.

Keywords: composite load model, measurement-based approach, nonlinear least-squares, parameter

estimation, stability analysis

1. Introduction

The accuracy of stability analysis findings has a
significant impact on the quality of power system
operational guidelines, operational planning, and design.
The accuracy of stability analysis, however, largely
depends on the validity of system models employed in
describing power system dynamic behaviors. Effective
system models are essential for simulating complex power
system behaviors. Load characteristics are known to have a
significant impact on power system dynamics. Inaccurate
load models, for instance, can lead to power system
operation in modes that result in actual system collapse or
separation [1].

Until now standard model structures for loads are still
unavailable while several IEEE standard model structures
have been proposed for synchronous generators [2], and
excitation systems [3]. Despite the fact that several load
models have been proposed, they appear to be adequate for
some types of power system dynamic analysis, but not for
others. The need for the development of accurate dynamic
load models for certain types of power system dynamic
analysis remains strong. Load modeling includes two tasks:
deriving a suitable model structure for a load bus, and
obtaining values of the associated model parameters [4].
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Currently, there are four favored methods for derivihg a
load model structure: physically-based  method,
component-based method, artificial neural-network
(ANN)-based method [5], and hybrid method (combination
of the above three methods).

Once the model structure is determined, the remaining
issue is how to estimate parameter values. Two approaches
are available to estimate load model parameters: the
component-based approach and the measurement-based
approach [4, 19]. Component-based load modeling is to
derive model parameters by aggregating models of the
individual components. This approach requires gathering
load class mix, load composition data and the dynamical
behaviors of each load component [4]. The measurement-
based approach involves placing measurement systems at
load buses for which load models will be developed. This
approach has the advantage of direct measurement of the
actual load behaviors during system disturbances so that
accurate load models can be obtained directly in the form
needed for the inputs of existing power system analysis and
control programs [4, 6]. Because of the attractive features
offered by the measurement-based approach, an on-line
transient data recording system has been developed at the
Taipower company to investigate actual load behaviors
during system disturbances [7, 8].

At each substation, power system loads represent the
aggregation of hundreds or thousands of individual
component devices such as motor, lighting, and electrical
appliances. Load models aim to represent their aggregate
behaviors. Several composite load model structures have
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been proposed based on the physical insights of load
composition and load behavior at each substation [6, 9-13].
For example a (linear) dynamic ZIP-motor load model was
developed based on field measurement data [6]. In this
model, the static ZIP portion of the load is represented by a
combination of constant impedance (Z), constant current
(I), and constant power (P) components, and it is slightly
different from the general form while the dynamic load is
represented by a third-order induction motor model.

In this paper, three composite load models are developed
based on on-line measurement data from the Taipower
system: general ZIP-induction motor (GZIP-IM) load
model, exponential-induction motor (Exp-IM) load model,
and Z-induction motor (Z-IM) load model. The GZIP-IM
load model is a combination of static load, which consists
of a general ZIP model structure [19], and dynamic load,
which is a third-order induction motor model structure. The
static part of the Exp-IM load model is represented by a
static exponential mode] while the dynamic part is the
same as that of GZIP-IM model. In the Z-IM load model, a
different type of a third-order induction motor model, say,
internal voltage form, can be used while the static load is
of constant impedance.

The parameters of the three composite load models are
estimated based on on-line measurement data. The task of
load model parameter estimation is formulated as a
nonlinear least squares problem with the output mismatch
error as the objective function. The performances of three
composite load models are evaluated in terms of estimation
relative error.

2. Preliminary of Measurement-based Approach

When a (credible) system disturbance occurs, the system
at each substation is triggered to record the three-phase
currents and voltages and store the data on a local
computer. At present, nine sets of self-acting monitoring
systems are installed at the level of primary substations and
distribution substations of the Taipower system [7].
Currently, 18 trigger types such as voltage level violation
and frequency limit violation are defined in the system.
The Discrete Fourier Transformation (DFT) technique is
used to transform the recorded data into phasor form. The
voltage and current phasors at each substation are then
used to compute real and reactive power at the substation.
The recorder system records signals that correspond to
voltage variations from about 0.5 to 1.2 p.u., current
variations from 0.1 to 1.0 p.u., and frequency variations
from 55 to 65 Hz [6]. The sampling rate of the data
recorder system can be flexibly adjusted and the sampling
rate of measurement data in our studies was about 3840 Hz
per channel (16 channels in parallel) with all channels
being sampled at the same frequency.

The real and reactive powers are calculated from the
computed symmetrical components of voltages and
currents using the positive sequence method. Then we test
the adequacy of the calculated input-output data based on
appropriate data sclection guidelines in order to drop out
the data that may not contain sufficient information for
parameter estimation. A procedure for identifying a
composite load model based on measurement data is
described as follows:

Step 1. Obtain a set of input-output data derived from a set
of measurements.

Step 2. Select a composite load model structure.

Step 3. Estimate its parameters using a suitable method and
estimation criterion.

Step 4. Evaluate the derived model using the estimation
criterion.

Step 5. If criterion is not met, take remedial actions; for
example, attempt another estimation method, or
attempt another model structure and go to Step 3.

In Step 1, we use calculated positive sequence voltage
magnitude (¥ ) and possibly frequency variation as input
and use computed real, reactive powers ( P, Q) as output.

By the very nature of the problem, the true parameter
values are unknown and it is unrealistic to define a direct
parameter error. We instead define an output error function
that can be computed from measurement output and model
output. In Step 3, since measurements are usually taken at
discrete instances, this indicates the necessity of deriving a
discrete-time space model when the original model is
expressed as a continuous state space model. Discretization
of linear dynamic model is quite straightforward. A few
transformation methods between the §- domain and the
Z -domain are available; for example, the well-known
forward rectangle rule or backward rectangle, or Tustin
transformation can be applied.

One key objective for composite load model
identification is to develop an accurate load model in
which the model output is as close to the measured output
as possible; making the so-called relative error between the
measured output and the model output as small as possible.

3. Composite Load Model Structures

A composite load model structure consists of a static part
and a dynamic part. In this section, we will derive useful
system representation for three linear composite load
models: GZIP-IM load model, Exp-IM load model and Z-
IM load model. The static load part of each composite load
model is connected with the third-order induction motor in
parallel. The overall composite load model is described by
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a set of differential-algebraic equations [6]:

x, = g(x,,u, p)
J’:h(x,,u,l?) )

where g(-,-,-)and A(,-,-) are nonlinear functions of the

state variable x ,input u and the parameter vector p.

A. GZIP-Induction Motor Load Model

A schematic of the composite equivalent circuit for the
GZIP-IM load model is shown in Fig. 1.

| power current impedanceI
o | loads loads loads |

V’ Avao

Fig. 1. A schematic of the GZIP-induction motor model

The static part of the GZIP-IM model is represented by a
form of polynomial function of bus voltage and given by

(2, 3

Py =By p,(V1V) 40,V V) +p] @

Qi = Q|0 (V V.Y +a,(VIV) +a] @

where subscript 0 denotes nominal value at the operating
point. Subscripts 1, 2 and 3 denote coefficients of constant
impedance, constant current and constant power parts
respectively. The static GZIP load model part is contained
in output equations of the composite GZIP-IM motor load
model.

The dynamic part of the GZIP-IM model is a third-order
induction motor model in rotor current form:

di
——=(B ~-BA'A)i +(u -B A'u 4
dt ( r 578 r)r ( r 478 x) ( )
do, To o ’
—=—iCA'Ai —i'C A 'u, -2 — 3)
t 2H \ o,

where i = [id i ]T . The detailed expression of the model

Ir? g
is described in Appendix A.

By combining the static ZIP part and dynamic third-
order induction motor part, a composite GZIP-IM load
model of the form (1) is obtained. The state vectors and

input-output  vectors are represented as follows:

xrz[id,,iq,,a),]T U=V, v, a)] y=[P,0] . Here,
the real and reactive power outputs of the GZIP-IM load

model are represented by a sum of static ZIP load model
output and induction motor output:

P=P[p,(V V) +0.(VIV,) +p.]+B (©)

0=0u|a (P 1V) +0,(V1¥,) +a,]+0, @)

where P,,(, are real and reactive powers consumed by

induction motor load and described in (A.7). The model
parameter vector to be estimated is defined as:
P=IR R, X, X, X H, T, 3,0, P Prs P3>Qr0s9-42>0:]
. The parameter vector is of 17-dimensions with(p,, q,),
(p,,q,), and (p,,g,) representing constant impedance,
constant current, and constant power, which are associated
with the static part of the GZIP-IM model structure. The
P

ZiPO
the static ZIP model at steady state that can be estimated or

and Q,,, represent the real and reactive power of

given by the user. In this paper, the P,,,, O, are

considered a part of the parameters to be estimated. It
should be noted that although ®,, is an initial condition
of the state equation, it is regarded as a parameter since it is
difficult to represent @, explicitly by other parameters,

input and state variables.

The linearized version of the nonlinear GZIP-IM load
model is developed here for modeling the dynamic
behaviors of real and reactive powers since the high-order
nonlinear dynamic system identification problem is still
very challenging. The linearized GZIP-IM load model can
be described by:

dAx
~=A, Ax +B, Au
dt dy r dq (8)

= CAx, +DAu

where the point (x,,u,) is a steady state satisfying

glx,pu, p)=0 , y, satisfies y, =h(x,u,p)
Ax, =x,—x,, and Au=u—u, are state and input increments.
A, =dgl/ox| , B, ,=0g/ou| , C=0n/dx| , and

D =0h/ 8u|x o The detailed expression of state space matrices,

A, B, , Cand D isomitted.
dg dg

It is interesting to note that the coefficients p,,q,

representing constant power load of the ZIP load model do
not appear in the linearized model, which implies that
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5>9, do not affect estimation results in the linearized
model and cannot be estimated independently. The p,,q,

are identified via the steady state relations among the input,
output and any remaining model parameters.

B. Exponential-Induction Motor Load Model

Exp-IM load model is composed of the static
exponential model in parallel with the induction motor. The
static part of the Exp-IM load model is represented by an
exponential function of bus voltage magnitude as follows:

Pre = Prvro (V/V:))va )

QEXP = Oriro (V/Vo)va (10)

The dynamic part of the Exp-IM load model is the same
as that of GZIP-IM load model and is omitted here. Also
the state vector and model input vector are identical to
those of the GZIP-IM load model. The real and reactive
power outputs of the Exp-IM load model are represented
by:

P=P

EXPO

O =0spo (V/K!)va-l-QM (12)

viv,)" +p, (11)

where F,,Q, are real and reactive powers consumed by

the induction motor load described in (A.7).
The parameter vector of the Exp-IM load model is
defined as:

p=I[R,, R,a X, Xm7Xr’H’ T, ﬂrwroaPE,\'Po’va’QEXPU’va]T

where K, K, are exponents related to real and reactive

powers and P, O,,, denote initial real and reactive

power portions of the static exponential model part.

The linearized Exp-IM load model can be expressed in
the form of (8) and is similar to the linearized GZIP-IM
load model. The only difference lies in four elements of the
D matrix, which are related to static exponential model
power outputs.

C. Z-Induction Motor Load Model

In the Z-IM load model, individual static loads are
represented by a single admittance G, + B, connected to

the third-order induction motor in parallel. We note that
different representations of induction motors are available.
In this composite load model representation, internal
voltage forms of the induction motor is used [14]. The state
and output equations of this model are represented as
follows:

To’dE =—£E’+X_X -V-cosd
dt X' X'

X-X' V-si
ﬁzw—a):———X -—V '51116 (13)
dt X' T)-E'
Mial:_VE‘sm&_T

dt X’ "
P=GV?’—(VE'/ X")-siné (14)
Q=BV*+V(V—-E'-cosd)/ X'

where E', 6 :
transient reactance. @,,  : angular velocity of stator and

voltage magnitude and angle behind

rotor [rad/s], X': transient reactance, T, : transient open-

circuit time constant, R : rotor resistances (zero stator

resistance is assumed), M : motor inertia, T, : load torque

constant. The linearized version of the Z-IM load model in
(13), (14) can be similarly derived and the detailed
expression is omitted here.

The initial state of (13) is needed to compute output
trajectory with given parameters. To obtain the initial state,
which is an equilibrium point, we set the derivatives of
states of (13) to zero. In order to avoid a numerical
8, =sin"'(arg)/2  where

problem in  calculating

arg=-2X -X"-T, {(X-X")-V?), we treat initial states
(8,, E;, ,) as unknown parameters to be estimated and
steady state conditions are incorporated in the objective
function (15) as regularization terms. Hence the number of
parameters to be identified increases by three (total 10
parameters) and the parameter vector is redefined as:

p=IM,T,,X,X,T, E.65, 0,G, B .

ro?

4. Parameter Estimation Scheme

Once a load model structure is determined, the
remaining task of estimating parameter values is
formulated as a nonlinear least squares model fitting
problem. The error function to be minimized is given as
follows:

2

min£(p) = min= (k) - 5(4)) (15)

where p denotes a parameter vector to be estimated. N
and Z are the total number of samples used for
estimation and the feasible parameter space. y(k) and
y(k) are the measured value and the predicted value of

output equation at the k™ sample, respectively. As an
example, in one set of measurement, the total number of
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samples, N was 7680 (=2 sec.x 3840 Hz). To solve the

parameter estimation problem (15), the quasi-Newton
method is applied. Among the quasi-Newton methods, the
Levenberg-Marquardt method is robust and often
considered to be a good method for nonlinear least squares
problems [15]. Other methods such as the Broyden,
Fletcher, Goldfarb, and Shanno (BFGS) are considered
reliable and well accepted [16].

It should be noted that ill-conditioned parameter
estimation problems can occur. For example if the
measurement data is not rich enough to adequately reflect
the individual effects of all the parameters or some
parameters are structurally unobservable, parameter values
may not be reliably estimated. A reliable algorithm has
been proposed to identify a subset of parameters that
ensures the Jacobian matrix is well-conditioned [17, 18].
The ranking of parameters in the sense of well-condition
can be done by performing the subset selection task
increasing the number of ill-conditioned parameters from 1
to m—-1 where m is the dimension of parameter
vector p.

In order to solve the ill-conditioned issue, we attempted
to estimate all parameters by applying upper and lower
bound constraints for parameters first. If a convergence
problem occurred in estimation, we then partitioned the
parameter vector into a well-conditioned one and ill-
conditioned one, and fixed ill-conditioned parameters to
their default values. Even though three composite load
models in this numerical study have a few ill-conditioned
parameters, the numerical convergence problem was not
observed during the parameter estimation procedure while
some parameters reached their bound values.

With the obtained parameter values, the load model
output (response) is simulated and is then compared with
the measured output in order to evaluate the performance
of the developed load model. To this end, the performance
of the developed load model is evaluated using the
following relative error & :

s=100x\/[%g(ya«)—ﬁ(k))z)/(%ﬁyacfj (16)
and yp(k) denote the measured and

where  y(k)

simulated (real or reactive) power, respectively. In this
paper, if ¢ is less than 5%, the composite load model is
said to be acceptable.

5. Numerical Studies

In this section, the composite load model of an industrial
substation of the Taiwan Power System is developed using

the measurement-based approach. The Panchiao substation
located in the northern part of Taiwan is an important
primary substation supplying power to mostly industrial
users. The substation transforms the voltage magnitude of
transmission lines from 161 kV to 69 kV via an
underload tap changer (ULTC). Eleven sets of
measurements are selected from the data-recording system
installed at the Panchiao substation. We classified loading
conditions into four categories considering month (season)
and hour: summer peak (SP), summer medium (SM),
summer light (SL), winter light (WL). Table 1 summarizes
eleven sets of measurements obtained at the Panchiao
substation. These sets of measurements were selected from
a larger number of measurements based on several
practical guidelines.

Table 1. Test Cases for Composite Load Modeling

Case Time Loading| Voltage Real Power
No. {MonthDay| Hour Con;imo Variation (%)| Variation (%)

1 8 2 100:24; SL1 5.6 104

2 8 2 100:39( SL2 5.5 10.0

3 8 2 |01:43] SL3 5.5 10.6

4 8 2 102:39( SL4 52 10.5

5 8 9 [11:34| SMI 9.1 264

6 6 18 111:03) SmM2 11.4 124

7 6 19 [14:38| SP1 16.5 25.8

8 1 11 |04:27| WLI1 9.0 21.0

9 1 11 106:06| WL2 9.1 21.8

10 1 10 103:08] WL3 12.6 32.5

11 1 6 106:51) WL4 9.8 25.0

As shown in Table 1, the range of voltage magnitude
variation of these measurements is between 5.2% and
16.5% with respect to the steady state value of voltage.
Real power is in the range of 10.0% ~ 32.5%, which is
more significant than voltage variation. The variation of
reactive power is generally large (more than 60%), which
is partly due to the fact that reactive power is relatively
small compared with real power.

We first present the parameter estimation results of the
three composite load models using the measurement data
of Case 7 in which a large voltage swing occurred. Table 2
lists obtained parameter values and a comparison of
estimation results for the GZIP-IM model, Exp-IM model,
and Z-IM model respectively. In order to avoid
unreasonable parameter values and the ill-conditioned
parameter problem, we applied proper lower and upper
bound constraints in the estimation.

The estimation results of Case 7 reveal that the GZIP-IM
load model gives the best result in modeling real and
reactive power behaviors during the disturbance. It is
interesting to note that although GZIP-IM and Exp-IM
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models have the same third-order induction motor part,
some parameters of the induction motor such as X, T,

show quite different values depending on the static part.
The estimation results indicate that all three composite load
models are well acceptable in modeling both real and
reactive power dynamic behaviors.

It can be seen from Table 2 that the Z-IM load model
gives inferior results compared with other composite load
models in modeling real power behavior while it provides
comparable results in modeling reactive power behavior.
To illustrate the effectiveness of the proposed composite
load model, the simulated real and reactive powers by the
GZIP-IM load model are shown in Fig. 2. It is seen from
this figure that the GZIP-IM load model can describe both
real and reactive power behaviors during disturbance very
accurately.

Table 2 Comparison of the parameter estimation using
composite models in Case 7

p* GIZ;[P' p Elﬁ) ) p Z-IM
R 0.1247 | R 0.1914 | M 0.0139
R 0.0210 | R 0.0220 | T, 0.0963
X, 0.1056 | X, 0.1682 | x 0.2089
X, 1.0460 | X, 3.0041 | x' 0.0446
X, 0.1423 | X, 0.1194 | T, 8.6157
H 0.0043 | H 0.0033 | E 1.0750
T, 1.1120 | T, 0.9068 | 4, -0.3689
i 2.8888 29614 | @, | 364381
@, 359935 | @, | 361.734 | G, 4.1358
P 0.8650 | Pupe | 0.7550 | B 2.8004
2 03631 | K, 1.8444 N/A
j 22 0.4963 | Qewe | 0.3583 N/A
ps 0.1406 | K, 3.2623 N/A
Qoo 0.0875 N/A N/A
g, 0.4313 N/A N/A
4, 0.7082 N/A , N/A
g -0.1395 N/A N/A
£(%) | 03241 |&(%) | 03627 |&(%) | 1.1504
g5(%) | 4.1538 |£,(%) | 4.4273 |£,(%) | 4.4207

p* : parameter vector

Fig. 3 presents a summary of modeling errors made by
these three composite load models on eleven measurement
data sets listed in Table 2. We compared the estimation
results of composite load models with those of a ZIP-
induction motor load model developed in the previous
work [6] (denoted by ZIP-IM) and two different third-order

induction motor load models: rotor current form and
internal voltage form.

Real Power Modeling (GZIP-IM load model)
Relative Error (%): 0.3241

— Measured P J
105} — - Modeled P

5

&,

5 0.95

:

ook

ks

=
0.85 1
0.8 E
U’lfs 1 1 1 L 1 1 1 N 1

0 0.2 04 06 08 1 12 14 16 1.8 2

time in seconds
(a) A comparison of real power measurement and
modeling

Reactive Power Modeling (GZIP-IM load Model)
Relative Error (%): 4.1538

— Measured Q
— - Modeled Q
& T
o
§ .
¥
©
‘? -
g
8
o
1 ) L . | I I L |
0 02 04 06 03 1 1.2 14 16 18 2
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(b) A comparison of reactive power measurement and
modeling

Fig. 2 Estimated real and reactive powers using Linearized
GZIP-IM Model
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04 }-

“dd 1l
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(a) Real power estimation
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Reactive Power Modeling Error (%)

(- GZIP-IM

6 .
—1 | BEXP-M

5 ' } {OZIP-M*
4 ‘| @ IM-Rotor Current

| B [M-Intemal V
3

Hlezam

L
2 ]
| M | { |
[ £ v :

Casel Case?2 Case3 Case4 Case$ Case6 Case7 Casc8 Case9 Case 10 Casell

(b) Reactive power estimation

Fig. 3 Comparison of real and reactive power modeling
errors by composite load models. Note that ZIP-IM*
in the above figure denotes the ZIP-induction motor
load model developed in the previous work [6].

From the numerical simulations we have the following
observations:

1. Overall, composite load models based on the third-order
induction motor model in rotor current form give better
results than third-order induction motor load models and
Z-IM in modeling both real and reactive power behavior
during disturbances.

2. In most cases, GZIP-IM gives the best results among all
load models considered in the numerical studies. Z-IM
shows inferior results than the induction motor model in
internal voltage form in some cases, while its parameter
dimension is larger than the induction motor model.

3. Regarding model accuracy, numerical estimation
relative errors indicate that all three composite load
models are satisfactory in modeling real and reactive
power behaviors.

4. We observed that some parameter values of each
composite load model are quite different at different
loading conditions, which suggests that parameters
should be properly updated in order to represent load
characteristic at each loading condition.

5. Global optimization techniques deserve to be considered
to obtain better solutions since our nonlinear least
squares problem has multiple local solutions.

6. Concluding remarks

In this paper, three linear composite load models are
developed based on measurement data gathered at different
loading conditions in the Taiwan Power System. The
estimation performance of each composite load model is
compared by eleven measurement data sets at different
loading conditions. Numerical considerations for ill-
conditioned parameters are addressed to enhance the

estimation procedure.

From the numerical studies, we observed that the
developed composite load models can accurately model
dynamic behaviors of reactive power as well as real power
during the disturbance. In particular, composite load
models based on the third-order induction motor model in
rotor current form provide better results than third-order
induction motor load models and the Z-IM load model.
Furthermore, we observed that some parameter values of
each composite load model are quite dependent on
different loading conditions, which suggests that
parameters should be properly updated at each loading
condition.

Appendix

A. Third-order Induction Motor Model in Rotor Current
Form

The dynamic part of the GZIP-IM and Exp-IM load
models is represented by the third-order induction motor
model in rotor current form. It is known that, in most cases,
the changes in stator flux linkages are much faster than the
changes in rotor flux linkages. A reduced order induction
motor model can be obtained by setting both - and
q — axis stator flux changes to zero.

dizlr — a)hR.er l _ mbRrXss s ermes l
¢ - A ds A dr A g5
d vy (A1)
+(a)—9’—uji Ly
A ar AT ds
dl‘q’ a)rXéSXm : a)V‘XUXVI‘ ' wamRs ;s
I A e ®= n I, + by
R X (A2)
— a)h /r\ 58 iqr _%vaqs
7
do, o X, (. . .. To,| o
L= m i —id )22 A3
dt 2H (“"“ ”“”) 2H | o, A3
where A=X_X -X. X =X +X_ X =X +X,.
(A.1) ~ (A.3) can be written into a compact form:
di FRY o
7’:(3, ~BA'A)i +(u,—B.A'u,) A4)
’ .
B
90, A i 7O A~ TP (A.5)
t 2H \ o,

where the vectors in the above compact form are:

. .o T Vs , vadx
O N T e

gs
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R Zx. o 2x
4= @, 4 = @,
R Lx 0
L @, (2
o,
B =
- w—&Xserr > —&RrX:r
] A AT

C}M[o 1}

2H (-1 0

(A4) and (A.5) can be rewritten into the following
compact form:

x, =g(x,,u,p) (A.6)

The real power P and @ consumed by induction
motor loads can be computed as follows:

_ . . . T: _ T g g
PM—vdxz¢T+vqxqu—uszs—uS (—A: Ai — A us)

QM = Vq:idv - vdsiqs = [Vq: - vz)k]is = [Vqs - va‘s](_A;lArir - A;‘u.r)
(A7)

where i =—A4"4i ~ 4'u,
The outputs of the GZIP-IM model and Exp-IM model can
be rewritten into the following compact form:

y= h(xr,u,p) (A.8)

Hence, the state dynamics and outputs of the induction
motor load can be described by equations (A.4), (A.5) and
(A.8). Thus, a'steady-state point, say (x,,u,) of the load

model must satisfy the following steady state condition.

Yo = (%054 P) (A9)
O=g(x,0,u0,p) (A.10)
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