• Title/Summary/Keyword: Power Signal

Search Result 5,913, Processing Time 0.029 seconds

Dynamic Synchronous Phasor Measurement Algorithm Based on Compressed Sensing

  • Yu, Huanan;Li, Yongxin;Du, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.53-76
    • /
    • 2020
  • The synchronous phasor measurement algorithm is the core content of the phasor measurement unit. This manuscript proposes a dynamic synchronous phasor measurement algorithm based on compressed sensing theory. First, a dynamic signal model based on the Taylor series was established. The dynamic power signal was preprocessed using a least mean square error adaptive filter to eliminate interference from noise and harmonic components. A Chirplet overcomplete dictionary was then designed to realize a sparse representation. A reduction of the signal dimension was next achieved using a Gaussian observation matrix. Finally, the improved orthogonal matching pursuit algorithm was used to realize the sparse decomposition of the signal to be detected, the amplitude and phase of the original power signal were estimated according to the best matching atomic parameters, and the total vector error index was used for an error evaluation. Chroma 61511 was used for the output of various signals, the simulation results of which show that the proposed algorithm cannot only effectively filter out interference signals, it also achieves a better dynamic response performance and stability compared with a traditional DFT algorithm and the improved DFT synchronous phasor measurement algorithm, and the phasor measurement accuracy of the signal is greatly improved. In practical applications, the hardware costs of the system can be further reduced.

Analysis Method of Signal Integrity for Mobile Display Circuit Modules (모바일 디스플레이 회로 모듈의 시그널 인티그리티 해석 기법)

  • Lee, Yong-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.64-69
    • /
    • 2009
  • This paper addresses the simulation methodology of signal integrity and power integrity for mobile display modules. The proposed technique can be applied to analyse a circuit module which consist of connector, FPCB and driver ICs. The recent demand of serial interconnection technology in the mobile display industry needs delicate impedance control of signal and power traces to prohibit system malfunctioning and to reduce electromagnetic field radiation. Based on the S-parameter and Z-parameter analysis, we analyse the correlation between frequency-domain and time-domain measurements. With multi-port macros, signal integrity can be included in power integrity analysis in time domain.

Large Signal Determination of Non-Linear Output Capacitance of Gallium-Nitride Field Effect Transistors from Switch-Off Voltage Transients - A Numerical Method

  • Pentz, David;Joannou, Andrea
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1912-1919
    • /
    • 2018
  • The output capacitance of power semiconductor devices is important in determining the switching losses and in the operation of some resonant converter topologies. Thus, it is important to be able to accurately determine the output capacitance of a particular device operating at elevated power levels so that the contribution of the output capacitance discharge to switch-on losses can be determined under these conditions. Power semiconductor switch manufacturers usually measure device output capacitance using small-signal methods that may be insufficient for power switching applications. This paper shows how first principle methods are applied in a novel way to obtain more relevant large signal output capacitances of Gallium-Nitride (GaN) FETs using the drain-source voltage transient during device switch-off numerically. A non-linear capacitance for an increase in voltage is determined with good correlation. Simulations are verified using experimental results from two different devices. It is shown that the large signal output capacitance as a function of the drain-source voltage is higher than the small signal values published in the data sheets for each of the devices. It can also be seen that the loss contribution of the output capacitance discharging in the channel during switch-on correlates well with other methods proposed in the literature, which confirms that the proposed method has merit.

A study on GEO satellite signals in L - to Ka-band affected by Asian Sand Dust

  • Hong Wan-Pyo
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2005
  • This paper represents an attempt to bring together and analyses the measurement data measured by the Satellite Signal Monitoring Center in Korea and the Korea Meteorological Administration/Korea Meteorological Research Institute in close cooperation with this study team. This paper presents the signal characteristic of GEO satellite operating in frequency range 1 to 20GHz associated with Asian Sand Dust (the so-called Yellow Sand Dust). The downlink signal power (dBm) for L-, S-, C-, Ku-, and Ka-band frequencies from GEO satellites were measured in a clear weather and in Asian Sand Dust weather by the Satellite Signal Monitoring Center. The measured signal power(dBm) were compared to the total number concentration and size distribution of Sand Dust that were measured by the Korea Meteorological Administration/Korea Meteorological Research Institute and the possible correlation between these sets data were analyzed. The results demonstrate that the downlink signal level (dBm) of GEO satellite is attenuated by Asian Sand Dust. Hitherto, merger information has been reported as to the influence of sand dust on satellite communications operating in regions affected by sand dust.

A Study On the Feedforward Linear Power Amplifier Using Imperfect Signal Cancellation And Feedback (Imperfect Signal Cancellation과 Feedback을 이용한 Feedforward 선형전력증폭기에 관한 연구)

  • Park, Jung-Min;Yang, Seung-In
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.87-90
    • /
    • 2003
  • In this paper, A feedforward linear power amplifier is analyzed for imperfect signal cancellation and negative feedback for basestaion of IMT2000 band. the distortion generatied by the error amplifier is reduced using an imperfect signal cancellation for a 1-carrier WCDMA source by 4.3dB at 2.5MHz offset and 6dB at 5MHz offset of IMSR(intermodulation signal power ratio) compared to a perfect signal cancellation system. additionally, An imperfect signal cancellation using negative feedback improved 1.3dB and 8.2dB at 2.5MHz and 5MHz offset of IMSR compared to an imperfect signal cancellation.

  • PDF

Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

  • Tanja Goricanec;Andrej Kavcic;Marjan Kromar;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.575-600
    • /
    • 2024
  • During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.

1.9-GHz CMOS Power Amplifier using Adaptive Biasing Technique at AC Ground

  • Kang, Inseong;Yoo, Jinho;Park, Changkun
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.285-289
    • /
    • 2019
  • A 1.9-GHz linear CMOS power amplifier is presented. An adaptive bias circuit (ABC) that utilizes an AC ground to detect the power level of the input signal is proposed to enhance the linearity and efficiency of the power amplifier. The ABC utilizes the second harmonic component as the input to mitigate the distortion of the fundamental signal. The input power level of the ABC was detected at the AC ground located at the VDD node of the power amplifier. The output of the ABC was fed into the inputs of the power stage. The input signal distortion was mitigated by detecting the input power level at the AC ground. The power amplifier was designed using a 180 nm RFCMOS process to evaluate the feasibility of the application of the proposed ABC in the power amplifier. The measured output power and power-added efficiency were improved by 1.7 dB and 2.9%, respectively.

A Study of Electromagnetic Interference in Power Line Communication (전력선 통신에서의 전자파 장해에 관한 연구)

  • Lee Jin-Taek;Chun Dong-Wan;Park Young-Jin;Lee Won-Tae;Shin Chul-Chai
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.620-625
    • /
    • 2004
  • In this paper, we studied the emissive electric field due to the communication signal and the noise in medium voltage power-line. There are many types of conductive noise in power-line channel, which gives rise to radiation. And if the DMT carrier signal was excited, the current by this term was added to the current by noise and, generate radiation. We calculated input impedance by means of signal input network model of medium voltage power-line channel for calculating these currents. We calculated currents by input impedance and, calculated the emissive electric field by this calculated currents. From the measurement results, we knew that the measured results are very similar to the calculated results and if the input signal power level was higher than -40 dBm, the emissive electric field exceeds FCC radiation limit level 69.5 dB$\mu$V/m.

A Protection Technique Against the Damages Caused by Lightning Surges on Information and Communication Facilities

  • Lee, Bok-Hee;Kang, Sung-Man;Ahn, Chang-Hwan
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.117-122
    • /
    • 2003
  • The AC power lines and signal lines of info-communication networks are routed on overhead poles and are highly exposed to lightning strikes. Due to the potential difference between grounding points of AC power lines and signal lines, the electronic equipments connected to the signal lines can easily be damaged by lightning surges. In this work, in order to develop reliable methods of protecting information and communication facilities from lightning surges, the reliability and performance of SPDs (surge protective devices) were experimentally investigated in an actual-sized test circuit. The behaviors of SPDs against lightning surges from AC power lines and signal lines and the coordinated effects of SPD installation methods were evaluated. As a consequence, it was confirmed that the bypass arrester methods and common grounding system are both highly effective.

Development of a Gas Sensor System with Built-in Low-power Signal Extraction Technique (저전력 신호 추출 기법이 내장된 가스 센서 시스템 개발)

  • Jang-Su Hyeon;Hyeon-June Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.105-109
    • /
    • 2023
  • In this study, we present a power-efficient driving method for gas sensor systems based on the analysis of input signal characteristics. The analysis of the gas sensor output signal characteristics in the frequency domain shows that most of the signal portions are distributed in a relatively low frequency region when extracting the gas sensor signal, which can lead to further performance improvement of the gas sensor system. Therefore, the proposed gas signal extracting technique changes the operating frequency of the read-out circuit based on the frequency characteristics of the output signal of the gas sensor, resulting in a reduction of power consumption at the whole system level. The proposed sensing technique, which can be applied to a general-purpose commercial gas sensor system, was implemented in a printed circuit board (PCB) to verify its effectiveness at the commercial level.