• Title/Summary/Keyword: Power Plant

검색결과 7,166건 처리시간 0.033초

실용적인 원전공학 교육을 위한 시스템즈 엔지니어 프로그램 (Systems Engineer Program for Practical Nuclear Power Plant Engineering Education)

  • 장중구;정재천
    • 시스템엔지니어링학술지
    • /
    • 제11권2호
    • /
    • pp.31-40
    • /
    • 2015
  • KEPCO International Nuclear Graduate School (KINGS) is dedicated to nurturing leadership-level professionals in nuclear power plant (NPP) engineering. KINGS have designed curriculum based on two philosophies. First, we balance aspects of discipline engineering, specialty engineering, and management engineering in the framework of systems engineering. Second, KINGS have designed the curriculum so that students can learn and experience the know-what, know-how and know-why level knowledge of NPP engineering and management. The specialization programs are opened during the 2nd year for 3 trimesters and those are a process of learning through practical project courses. The objectives of the specialization programs are to help students to learn the NPP life cycle technologies in highly structured and systematic ways. The systems engineer program (SEP) is one of the specialization programs. A practical case of the SEP which was applied to the project course for the NPP electric power system design education will be elaborated in this paper.

냉각공기 예냉각을 통한 가스터빈 설계변수 변화에 의한 복합발전시스템 성능향상 분석 (Analysis of Performance Enhancement of a Combined Cycle Power Plant by the Change of Design Parameters of Gas Turbine Using Coolant Pre-cooling)

  • 권현민;김동섭;강도원;손정락
    • 한국유체기계학회 논문집
    • /
    • 제19권5호
    • /
    • pp.61-67
    • /
    • 2016
  • Turbine blade cooling is one of the major technologies to enhance the performance of gas turbine and combined cycle power plants. In this study, two cases of coolant pre-cooling schemes were applied in combined cycle power plant: decrease of coolant mass flow needed to cool turbine blade and increase of turbine inlet temperature (TIT). Both schemes are benefited by the decrease of coolant temperature through coolant pre-cooling. Under the same degree of pre-cooling, increasing TIT exhibits larger plant power boost and higher plant efficiency than reducing coolant flow. As a result, the former produces the same gas turbine power with a much smaller degree of pre-cooling than the latter. Another advantage of increasing TIT is a higher plant efficiency. Even with an assumption of partial achievement of the theoretically predicted TIT, the method of increasing TIT can provide considerably larger power output.

발전소 증설이 환경, 지역사회 및 경제에 미치는 영향 - 제 3차 전력 수급계획에 의한 인천 지역의 화력발전소 증설을 중심으로 - (The Impact of Power Plants on the Environment and Region - Focus on Incheon Area according to the 3rd Electric Support Action Plan -)

  • 정창훈;;이희관
    • 환경영향평가
    • /
    • 제18권4호
    • /
    • pp.195-208
    • /
    • 2009
  • The power plant is well known to influence air pollution as well as emission of green house gas. Because of increasing demand on electricity, the government set up the electric support action plan every 2 years. In this research, the impacts of power plants on the environment and region was studied. The study was focused on the establishment of power plant in Incheon area based on the 3rd electric support action plan. According to the 3rd electric support action plan, almost 80% of power plant in metropolitan area is planned to be built in Incheon area. The main influences of establishment of power plant are emissions of $SO_x$, $NO_x$ and PM and exceed the allocated local industry emissions, which means the emission allocation of other industry is difficult. In additions, the power plant exhaust $CO_2$ much more than other types of fuel such as waterpower generation, atomic power station. Although several supports are given in local government, these cannot cover the whole cost due to establishment of power plant. Subsequently, this study suggest the additional policy based on local consideration is needed and the current electricity distribution system should be reconsidered fundamentally in the lang term.

순산소 석탄 연소 발전 시스템의 성능 평가 - 동력 사이클의 열역학적 해석 (Performance Evaluation of an Oxy-coal-fired Power Generation System - Thermodynamic Evaluation of Power Cycle)

  • 이광진;최상민;김태형;서상일
    • 한국연소학회지
    • /
    • 제15권2호
    • /
    • pp.1-11
    • /
    • 2010
  • Power generation systems based on the oxy-coal combustion with carbon dioxide capture and storage (CCS) capability are being proposed and discussed lately. Although a large number of lab scale studies for oxy-coal power plant have been made, studies of pilot scale or commercial scale power plant are not enough. Only a few demonstration projects for oxy-coal power plant are publicized recently. The proposed systems are evolving and various alternatives are to be comparatively evaluated. This paper presents a proposed approach for performance evaluation of a commercial 100 MWe class power plant, which is currently being considered for 'retrofitting' for the demonstration of the concept. The system is configurated based on design and operating conditions with proper assumptions. System components to be included in the discussion are listed. Evaluation criteria in terms of performance are summarized based on the system heat and mass balance and simple performance parameters, such as the fuel to power efficiency and brief introduction of the second law analysis. Also, gas composition is identified for additional analysis to impurities in the system including the purity of oxygen and unwanted gaseous components of nitrogen, argon and oxygen in air separation unit and $CO_2$ processing unit.

발전소 용량변경에 따른 비용보정계수 (Cost Scaling Factor according to Power Plant Capacity Change)

  • 하각현;김성환
    • 에너지공학
    • /
    • 제22권3호
    • /
    • pp.283-286
    • /
    • 2013
  • 전력사업자의 요청, 경제적인 요인 또는 기타 요인에 따라 기존 발전소의 설계개념 변경 없이 발전소의 전기출력을 증가 또는 감소시켜 발전소를 재설계하는 경우가 종종 있다. 이때 노심출력 및 전기출력을 변경시켜 재설계되는 발전소의 설비들의 가격을 예측할 경우, 시장에서 견적을 받을 환경이 아닐 경우에는 기존발전소 설비들의 가격에 비용보정계수(Cost Scaling Factor)를 적용하여 새로 설계되는 발전소 설비들에 비용들을 계산할 수 있다. 이에 미국의 DOE, EPRI, ABB, SWEC 기관들의 발전소 용량변경에 따른 비용보정계수를 검토하고, 그것을 국내 PWR 1000MWe, 1400MWe에 적용한 결과를 소개하고자 한다.

발전소 복수기 배열회수의 지역난방 및 연료라인 예열용 활용타당성 검토 (Feasibility Study on Thermal Power Plant Condenser Heat Recovery for District Heating and Fuel Line Preheating)

  • 정훈;황광원
    • 신재생에너지
    • /
    • 제5권3호
    • /
    • pp.40-48
    • /
    • 2009
  • Recovered heat has been considered as a renewable energy in Europe since 2008 because its great effect on energy saving and carbon decreasing in plant process. Energy saving and decreasing green gas are critical issue today, so various technologies to save energy and decrease carbon dioxide in plant process have been applied to many industrial area. In this paper, the feasibility of condenser heat recovery by heat pump in power plant for district heating and fuel line preheating were reviewed by verifying energy (heat) balance and mass balance of power plant model. Some ways to compose proper system to recover heat of condenser are suggested and their possibilities are also reviewed. Limitations on heat recovery in power plant are also reviewed. The results are verified by calculating input/output energy based on actual performance test data of Taean Thermal Power Plant in Korea. There is noticeable improvement of plant performance in some cases which demand low temperature (<100 C) heat like distrcit heating, fuel line heating, and so forth.

  • PDF

BIM을 활용한 원전 해체 물량산출 방안 (Plan of BIM-based Quantity Take-off for Nuclear Power Plant Decommissioning)

  • 정인수;원지선
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.6297-6304
    • /
    • 2015
  • 우리나라 최초의 원자력발전소인 고리 원전 1호기의 폐쇄가 결정됨에 따라 원전 해체가 화두가 되고 있다. 원전 해체는 우리나라에서 한번도 경험해 보지 못한 일로 해체 과정도 어렵고 시간도 많이 소요된다. 그 일부분인 해체물량 또한 파악이 어렵다. 본 연구에서는 최근 건설산업에 많이 활용되고 있는 BIM 기술을 원전 해체 물량산출에 활용할 수 있는 방안을 제시하였다. 그 결과, 원전 해체 공법선정 및 공정 확립, BIM 모델링 환경 준비, 작업분류체계 구축, 객체분류체계 구축, BIM 통합모델 작성, BIM 객체에 물량 속성 배분 등의 방안을 제시하였다. 제시한 방안은 영구정지 대상 원전이 집중적으로 발생하는 시기부터 유용하게 활용될 수 있다. 이에 기반한 기술확보를 통해 나아가 해외 원전 해체 사업 수주에도 유리하게 작용할 것으로 기대된다.

원전 구조물의 경년열화를 고려한 지진응답예측 기계학습 모델의 성능평가 (Performance Evaluation of Machine Learning Model for Seismic Response Prediction of Nuclear Power Plant Structures considering Aging deterioration)

  • 김현수;김유경;이소연;장준수
    • 한국공간구조학회논문집
    • /
    • 제24권3호
    • /
    • pp.43-51
    • /
    • 2024
  • Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson's ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.

발전 플랜트의 엑서지 해석으로부터 발전량 및 발전효율 최적화 (Power and Efficiency Optimization through Exergy Analysis of Power Plant)

  • 김덕진;이재병;강수환
    • 플랜트 저널
    • /
    • 제9권3호
    • /
    • pp.43-47
    • /
    • 2013
  • 발전 플랜트의 발전량 최적화 및 발전효율 최적화는 에너지공학을 전공한 전문가일지라도 이해하기 힘든 개념이다. 본 연구에서는 엑서지 및 엑서지율이라는 열역학적 상태값을 적용하여 에너지 공학을 전공하지 않은 일반인일지라도 발전량 및 발전효율 최적화 개념을 쉽게 이해할 수 있는 차트가 개발되었다. 발전소의 성능을 파악할 수 있는 대표적인 물성치는 주증기의 온도 및 압력이다. 개발된 차트에서는 주증기의 온도 및 압력에 따른 최대 발전량 곡선과 최대 효율 곡선이 도시되어 있으므로, 해석하고자 하는 발전소의 온도 및 압력을 차트에 적용하여 그 발전소가 얼마만큼 최대 발전량과 최대 효율에 접근해 있는지를 쉽게 파악할 수 있다.

  • PDF

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • 제8권3호
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.