• Title/Summary/Keyword: Power Monitoring Unit

Search Result 224, Processing Time 0.025 seconds

Remote Sensing Monitoring and Loss Estimated System of Flood Disaster based on GIS

  • Wenqiu, Wei
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.507-515
    • /
    • 2002
  • Remote Sensing Monitoring and Loss Estimated System of Flood Disaster based on GIS is an integrated system comprised flood disaster information receiving and collection, flood disaster simulation, and flood disaster estimation. When the system receives and collects remote sensing monitoring and conventional investigation information, the distributional features of flood disaster on space and time is obtained by means of image processing and information fusion. The economic loss of flood disaster can be classified into two pus: direct economic loss and indirect economic loss. The estimation of direct economic loss applies macroscopic economic analysis methods, i.e. applying Product (Industry and Agriculture Gross Product or Gross Domestic Product - GDP) or Unit Synthetic Economic Loss Index, direct economic loss can be estimated. Estimating indirect economic loss applies reduction coefficient methods with direct economic loss. The system can real-timely ascertains flood disaster and estimates flood Loss, so that the science basis fur decision-making of flood control and relieving disaster may be provided.

  • PDF

Structural Health Monitoring System Employing Smart Sensor Technology Part 1: Development and Performance Test of Smart Sensor (스마트 센서 기술을 이용한 구조물 건전도 모니터링 시스템 Part I : 스마트 센서의 개발과 성능평가)

  • Heo, Gwang Hee;Lee, Woo Sang;Kim, Man Goo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.134-144
    • /
    • 2007
  • In this study, a smart sensor unit is developed by using the smart sensor technology that is being rapidly developed in recent years for structural health monitoring system, and its performance is evaluated through various experiments, and also, damage detection experiment is performed on a model structure. This paper as the first half of this study contains the development and performance evaluation of the smart sensor. In the latter half of this study, structure damage detection experiment is performed for the application of verified smart sensor unit into structural health monitoring, and it is compared with a wire measurement system. The smart sensor is developed by using high-power wireless modem, MEMS Sensor and AVR microcontroller, and an embedded program is also developed for the control and operation of the sensor unit. To verify the performance of the smart sensor, many experiments are performed for sensitivity and resolution analysis tests, data acquisition by using cantilever beam and shaker, and on-site application using actual bridge. As a result, the smart sensor proves to be satisfactory in its performance.

Development of a smart wireless sensing unit using off-the-shelf FPGA hardware and programming products

  • Kapoor, Chetan;Graves-Abe, Troy L.;Pei, Jin-Song
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.69-88
    • /
    • 2007
  • In this study, Field-Programmable Gate Arrays (FPGAs) are investigated as a practical solution to the challenge of designing an optimal platform for implementing algorithms in a wireless sensing unit for structuralhealth monitoring. Inherent advantages, such as tremendous processing power, coupled with reconfigurable and flexible architecture render FPGAs a prime candidate for the processing core in an optimal wireless sensor unit, especially when handling Digital Signal Processing (DSP) and system identification algorithms. This paper presents an effort to create a proof-of-concept unit, wherein an off-the-shelf FPGA development board, available at a price comparable to a microprocessor development board, was adopted. Data processing functions, including windowing, Fast Fourier Transform (FFT), and peak detection, were implemented in the FPGA using a Matlab Simulink-based high-level abstraction tool rather than hardware descriptive language. Simulations and laboratory tests were carried out to validate the design.

A Monitoring Unit for Lead Storage Batteries in Stand Alone PV Generation Systems (독립형 태양광 발전소의 연 축전지 모니터링장치 개발)

  • Moon, Chae-Joo;Kim, Tae-Gon;Chang, Young-Hag;Kjm, Eui-Sun;Lim, Jung-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • Use of the PV(photovoltaic) generation system is increased in such areas as remote mountain places or islands at which electrical energy is not serviced. The stand alone PV system is required the power storage products such as battery, fly wheel and super capacitor. Several lead storage batteries are connected in series to get high voltages. The life of lead storage battery is shortened when over charge or over discharge takes place. So, it is needed to control batteries not to be overcharged or be discharged deeply. Voltage of each battery was ignored in former control methods in which overall voltage was used to control charge or discharge battery. In this study, the charging and discharging voltage variations of sealed lead storage batteries with l2V/l.2A were investigated step by step experiments. The results of the test show that one should consider and specify the state of each battery to prevent overcharge or deep discharge. With the basis of the experiments, we designed a monitoring unit to monitor battery voltages simultaneously using micro-controller. The unit measures voltage of 20 batteries simultaneously and displays data on the color LCD monitor with curved line graph. It also sends data to PC using the RS232C communication port. The designed unit was adapted to stand alone PV system with 1kW capacity and lead storage batteries are connected to the PV generation system. The number of lead storage batteries was 10 in series and 12V/250Ah each. Resistive load with 3kW was used for discharging.

A FSK Radio-telemetry System for Monitoring Vital Signs in UHF Band (UHF 대역 FSK에 의한 생체신호 무선 전송장치의 개발)

  • Park D.C.;Lee H.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.255-260
    • /
    • 2000
  • This paper presents a radio-telemetry patient monitor. which is used for intensive cal?e units. emergency and surgical operation rooms to monitor continuously patients' vital signs. The radio-telemetry patient monitor consists of a vital sign acquisition unit. wireless data transmission units and a vital sign-monitoring unit. The vital sign acquisition unit amplifies biological signals, performs analog signal to serial digital data conversion using the one chip micro-controller. The converted digital data is modulated FSK in UHF band using low output power and transmitted to a remote site in door. In comparison with analog modulation. FSK has major advantages to improve performance with respect to noise resistance with fower error and the potential ability to process and Improve quality of the received data. The vital sign-monitoring unit consists of the receiver to demodulate the modulated digital data, the LCD monitor to display vital signs continuously and the thermal head printer to record a signal.

  • PDF

Development of 250kW Power Conditioning System for Large Scale Photovoltaic Power Plant (대규모 태양광 발전설비를 위한 전력변환기 개발)

  • Kang, Ho-Hyun;Jung, Hong-Ju;Kim, Wang-Mun;Suh, In-Young
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.640-642
    • /
    • 2008
  • This paper presents the design, development and performance of a 250kW power conditioning system(PCS) for large scale photovoltaic power plant. The PV inverter consists of a three phase IGBT stack, L-C filter, transformer and HMI unit for monitoring. To verify the performance of the PV inverter a testing facility was designed and constructed to simulate the characteristics of the solar cell and grid.

  • PDF

Monitoring Performance of Camera under the High Dose-rate Gamma Ray Environment (고선량율 감마선 환경하에서의 카메라 관측성능)

  • Cho, Jai-Wan;Jeong, Kyung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1172-1178
    • /
    • 2012
  • In this paper, the gamma ray irradiation test results of the CCD cameras are described. From the low dose-rate (2.11 Gy/h) to the high dose-rate (150 Gy/h) level, which is the same level when the hydrogen explosion was occurred in the 1~3 reactor unit of the Fukushima nuclear power plant, the monitoring performance of the cameras owing to the speckles are evaluated. The numbers of speckles, generated by gamma ray irradiation, in the image of cameras are calculated by image processing technique. And the legibility of the sensor indicator (dosimeter) owing to the numbers of the speckles is presented.

CIM based Distribution Automation Simulator (CIM 기반의 배전자동화 시뮬레이터)

  • Park, Ji-Seung;Lim, Seong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.87-94
    • /
    • 2013
  • The main purpose of the distribution automation system (DAS) is to achieve efficient operation of primary distribution systems by monitoring and control of the feeder remote terminal unit(FRTU) deployed on the distribution feeders. DAS simulators are introduced to verify the functions of the application software installed in the central control unit(CCU) of the DAS. Because each DAS is developed on the basis of its own specific data model, the power system data cannot be easily transferred from the DAS to the simulator or vice versa. This paper presents a common information model(CIM)-based DAS simulator to achieve interoperability between the simulator and the DASs developed by different vendors. The CIM-based data model conversion between Smart DMS (SDMS) and Total DAS (TDAS) has been performed to establish feasibility of the proposed scheme.

Implementation and Evaluation of Chair-type ECG Monitoring System using Unconstraint Electrode (무구속 전극을 이용한 의자형 심전도 모니터링 시스템의 구현 및 평가)

  • Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.56-62
    • /
    • 2015
  • In this study, we implemented an unconstraint ECG monitoring system on a chair. Nowadays, modern people spend most of their time sitting on the chair. Therefore, it is necessary to have an unconstraint ECG monitoring system that can be used for a long time. The implemented system can perform measurement even with clothes on and it has great advantage on motion artifacts. A pair of unconstraint electrodes are placed on the back of the chair. Amplifier and filters are designed to remove motion artifacts, The baseline noise and power line noise are filtered and very low level of bio-signal is amplified to give a final measurement. Control unit and wireless transmission unit are implemented. Analog signal is converted into digital signal and transmits biological signal to the PC and the smart phone. Therefore continuous ECG monitoring in daily life is made possible. A comparison experiment between Ag / AgCl electrode and unconstraint electrode is conducted to evaluate the performance of the implemented system. As a result, we confirm our unconstraint system can be used for daily life ECG monitoring.

Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge

  • Lin, H.R.;Chen, C.S.;Chen, P.Y.;Tsai, F.J.;Huang, J.D.;Li, J.F.;Lin, C.T.;Wu, W.J.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.939-951
    • /
    • 2010
  • A low-cost wireless sensor network (WSN) solution with highly expandable super and simple nodes was developed. The super node was designed as a sensing unit as well as a receiving terminal with low energy consumption. The simple node was designed to serve as a cheaper alternative for large-scale deployment. A 12-bit ADC inputs and DAC outputs were reserved for sensor boards to ease the sensing integration. Vibration and thermal field tests of the Chi-Lu Bridge were conducted to evaluate the WSN's performance. Integral acceleration, temperature and tilt sensing modules were constructed to simplify the task of long-term environmental monitoring on this bridge, while a star topology was used to avoid collisions and reduce power consumption. We showed that, given sufficient power and additional power amplifier, the WSN can successfully be active for more than 7 days and satisfy the half bridge 120-meter transmission requirement. The time and frequency responses of cables shocked by external force and temperature variations around cables in one day were recorded and analyzed. Finally, guidelines on power characterization of the WSN platform and selection of acceleration sensors for structural health monitoring applications were given.