• Title/Summary/Keyword: Power Loss Cost

Search Result 408, Processing Time 0.023 seconds

The Measurement and Consideration of Path Loss in Domestic Terrain Environments for IMT-2000 (국내지형환경에서의 IMT-2000주파수 대 경로손실 측정 및 고찰)

  • 이상수;이동진;최학근;김준철;박원진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.547-552
    • /
    • 2002
  • In this paper, the path loss in domestic terrain environments for IMT-2000 are measured and considered. Domestic terrain environments are classified and received power is measured at 1.9201GHz. In addition, the Path loss is calculated with consideration of the radiation pattern of antennas based on the results of measurement. For the consideration of path loss in domestic terrain environments, each path loss are fitted with the same slope of a reference model as "COST-231 HATA Urban Model", and then both are compared. As a result, all of the path loss in domestic terrain environments are lower than the path loss of a reference model as "COST-231 HATA Urban Model". We found that a difference of path loss in domestic terrain environments and a reference model is 5dB in urban, 8dB in sparse urban, 12dll in dense suburban, 13dB in suburban, 19dB in sparse suburban, and 29dB in road.

Optimal Design of Power Grid and Location of Offshore Substation for Offshore Wind Power Plant (해상풍력발전단지의 전력망과 해상변전소 위치에 대한 최적 설계)

  • Moon, Won-Sik;Won, Jong-Nam;Huh, Jae-Sun;Jo, Ara;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.984-991
    • /
    • 2015
  • This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.

A Study on the Improvement of Subsidy Program for CHP Plant Connected with Capital Region District Heating System (수도권 지역난방연계 열병합발전소의 기반기금 지원과 개선방안)

  • 김창수;이창호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.97-103
    • /
    • 2004
  • CHP system supplies electricity and heating together with high efficiency. Current utility's CHP system uses electric power by itself and sells thermal energy to KDHC(Korea District Heating Corporation). CHP's operation cost except sales revenue of heating was covered by the sale revenue of electricity. Thus Electric generation cost in district Heating CHP system has close relationship with the level of heating price. However, after the restructuring of electricity industry, the operation cost could not be covered by sales revenue of heating and electricity. This loss was compensated by energy subsidy program in the electric power industry infrastructure fund. This paper suggests reasonable evaluation and improvement methods of the loss calculation of CHP system utilizing the infrastructure fund efficiency In terms of the direction of support by the fund, it provides the methods to prevent inefficient operation through setting up the upper limit of subsidy and to improve the loss calculation. Moreover, it suggest fixed rate support by heating supply level and reducing subsidy gradually for an efficient operation of CHP system.

Marginal Loss Factor using Optimal Power flow in Power Market (최적조류계산을 이용한 한계손실계수의 전력시장 적용)

  • Sin, Dong-Jun;Go, Yong-Jun;Lee, Hyo-Sang;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.379-384
    • /
    • 2002
  • In the competitive electricity market, various pricing methods are developed and practiced in many countries. Among these pricing methods, marginal loss factor(MLF) can be applied to reflect the marginal cost of network losses. For the calculation of MLF, power flow method has been used to calculate system loss deviation. However, this power flow method shows some shortcomings such as necessity of regional reference node, and absence of an ability to consider network constraints like line congestion, voltage limit, and generation output limit. The former defect might affects adversely to the equity of market participants and the latter might generate an inappropriate price signals to customers and generators. To overcome these defects, the utilization of optimal power flow(OPF) is suggested to get the system loss deviation in this paper. 30-bus system is used for the case study to compare the MLF results by the power flow and the OPF method for 24-hour dispatching and pricing, Generator payment and customer charge are compared with these two methods also. The results show that MLF by OPF reflects the power system condition more faithfully than that of by the conventional power flow method

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost and Integrated Costs (발전비용의 부하역률 감도와 종합비용을 활용한 효과적인 역률개선 방안 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.284-286
    • /
    • 2003
  • The low load power factor causes various problems such as the Increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost and integrated costs are used for determining the locations and capacities of reactive power compensation devices effectively and for enhancing the load power factor appropriately. It is shown through the application to a small-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

High Performance and Low Cost Single Switch Current-fed Energy Recovery Circuits for AC Plasma Display Panels

  • Han Sang-Kyoo;Youn Myung-Joong
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.253-263
    • /
    • 2006
  • A high performance and low cost single switch current fed energy recovery circuit (ERC) for an alternating current (AC) plasma display panel (PDP) is proposed. Since it is composed of only one power switch compared with the conventional circuit consisting of four power switches and two large energy recovery capacitors, the ERC features a simpler structure and lower cost. Furthermore, since all power switches can be switched under soft switching operating conditions, the proposed circuit has desirable merits such as increased reliability and low switching loss. Specifically, there are no serious voltage notches across the PDP with the aid of gas discharge current compensation, which can greatly reduce the current stress of all inverter switches, and provide those switches with the turn on timing margin. To confirm the validity of proposed circuit, its operation and performance were verified on a prototype for 7-inch test PDP.

Heat-Electric Power Ratio Optimization To Maximize Profit of a Cogeneration Power Plant (열병합 발전기 수익 극대화를 위한 열전비 최적화)

  • Kim, Gun-Hoe;Lee, Jae-Heon;Moon, Seung-Jae;Chang, Taek-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.381-384
    • /
    • 2008
  • This paper presents an operational technique to maximize profit of a cogeneration power plant. To minimize errors in a loss and gain analysis of a cogeneration power plant, the energy sale profit in the cost-based-pool electric power trade market, the heat sale profit, and the supplementary fund profit for electric power industry are taken into consideration. The objective is to optimize the heat-electric power ratio to maximize profit of a cogeneration power plant. Furthermore, the constrained bidding technique to optimize heat-electric power ratiocan be obtained. Profits from of a cogeneration power plant are composed of three categories, such as the energy sale profit in the cost-based-pool electric power trade market, the heat sale profit, and the supplementary fund profit for electric power industry. Profits of a cogeneration power plant are varied enormously by the operation modes. The profits are mainly determined by the amount of constrained heat generation in each trading time. And the three profit categories arecoupled tightly via the heat-electric power ratio. The result of this case study can be used as a reference to a cogeneration power plant under the power trading system considered in this case.

  • PDF

Muffler Design Using Transmission Loss Prediction Considering Heat and Flow (열과 유동을 고려한 음장해석을 통한 머플러의 설계)

  • Kim, Hyunsu;Kang, Sang-Kyu;Lim, Yun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.600-605
    • /
    • 2014
  • Two mufflers for a large-size sedan are suggested aiming (1) sporty-sound and (2) quiet-sound as well as both satisfying low back-pressure and low manufacturing cost. Transmission loss prediction considering heat and flow may increase the accuracy and reduce the development cost in muffler design; thus, GT-power prediction considering heat, flow, and acoustics is utilized. By understanding the fundamentals of flow-acoustic theory in small orifice(hole), an effective muffler design concept is proposed. Vehicle tests show the consistence with predictions for sound; also a back-pressure test bench confirms the advantage in pressure drop for both suggested mufflers. Those suggested mufflers also have advantages in manufacturing cost due to simplicity of the design.

Development of High-Efficiency Low-Cost Drive System of Small-Size Electric Vehicles

  • Duong, Thuy-Lien;Tran, Thanh-Vu;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.105-110
    • /
    • 2012
  • This paper designs the high-efficiency and the low-cost drive system of the smallsize electric vehicles (EVs). The power circuit for driving the dc motor is designed by considering both the cost and efficiency. In order to reduce the conduction loss of MOTFET and diode for controlling an armature voltage, some MOSFETs and diodes at the armature are in parallel connection. An operating sequence for both the field current and the armature voltage according to the accelerator pedal angle is suggested for changing smoothly the rotating direction of dc motor. Through the simulation studies, the performances of the proposed methods are verified.

Dual-Output Single-Stage Bridgeless SEPIC with Power Factor Correction

  • Shen, Chih-Lung;Yang, Shih-Hsueh
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.309-318
    • /
    • 2015
  • This study proposes a dual-output single-stage bridgeless single-ended primary-inductor converter (DOSSBS) that can completely remove the front-end full-bridge alternating current-direct current rectifier to accomplish power factor correction for universal line input. Without the need for bridge diodes, the proposed converter has the advantages of low component count and simple structure, and can thus significantly reduce power loss. DOSSBS has two uncommon output ports to provide different voltage levels to loads, instead of using two separate power factor correctors or multi-stage configurations in a single stage. Therefore, this proposed converter is cost-effective and compact. A magnetically coupled inductor is introduced in DOSSBS to replace two separate inductors to decrease volume and cost. Energy stored in the leakage inductance of the coupled inductor can be completely recycled. In each line cycle, the two active switches in DOSSBS are operated in either high-frequency pulse-width modulation pattern or low-frequency rectifying mode for switching loss reduction. A prototype for dealing with an $85-265V_{rms}$ universal line is designed, analyzed, and built. Practical measurements demonstrate the feasibility and functionality of the proposed converter.