• Title/Summary/Keyword: Power Inductor

검색결과 997건 처리시간 0.034초

Passive Lossless Snubbers Using the Coupled Inductor Method for the Soft Switching Capability of Boost PFC Rectifiers

  • Kim, Ho-Sung;Baek, Ju-Won;Ryu, Myung-Hyo;Kim, Jong-Hyun;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.366-377
    • /
    • 2015
  • In order to minimize switching losses for high power applications, a boost PFC rectifier with a novel passive lossless snubber circuit is proposed. The proposed lossless snubber is composed of coupled inductors merged into a boost inductor. This method compared with conventional methods does not need additional inductor cores and it reduces extra costs to implement a soft switching circuit. Especially, the proposed circuit can reduce the reverse recovery current of output diode rectifiers due to the coupling effect of the inductor. During turn-on and turn-off operating modes, the proposed PFC converter operates under soft switching conditions with high power conversion efficiency. In addition, the performance improvement and analysis of the operating effects of the coupled inductors were also presented and verified with a 3.3 kW prototype rectifier.

Single-Stage Half-Bridge Electronic Ballast Using a Single Coupled Inductor

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.699-707
    • /
    • 2012
  • This paper proposes a single-stage half-bridge electronic ballast with a high power factor using only a single coupled inductor. Compared to conventional high power factor electronic ballasts, the proposed ballast is a simpler circuit with a low cost and a high reliability. The proposed ballast is made up of a power-factor-correction (PFC) circuit and a self-oscillating class-D inverter. The PFC and inverter stages of the proposed ballast are simplified by sharing only a single coupled inductor and two common switches. The proposed PFC circuit can achieve a high power factor and low voltage stresses of the switches. A saturable transformer in the self-oscillating class-D inverter determines the switching frequency of the ballast. Experimental results obtained on a 30W fluorescent lamp are discussed.

A Simple Structure of Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) Buck Converter with Coupled Inductor

  • Wei, Xinxin;Luo, Ciyong;Nan, Hang;Wang, Yinghao
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1480-1488
    • /
    • 2015
  • In this paper, a revolutionary buck converter is proposed with soft-switching technology, which is realized by a coupled inductor. Both zero-voltage switching (ZVS) of main switch and zero-current switching (ZCS) of freewheeling diode are achieved at turn on and turn off without using any auxiliary circuits by the resonance between the parasitic capacitor and the coupled inductor. Furthermore, the peak voltages of the main switch and the peak current of the freewheeling diode are significantly reduced by the coupled inductor. As a result, the proposed converter has the advantages of simple circuit, convenient control, low consumption and so on. The detailed operation principles and steady-state analysis of the proposed ZVS-ZCS buck converter are presented, and detailed power loss analysis and some simulation results are also included. Finally, experimental results based on a 200-W prototype are provided to verify the theory and design of the proposed converter.

전류원형 능동 전력 필터의 직류측 모델에 관한 연구 (A Study on DC side Model of Current Source type Active Power Filters)

  • 한학근;박인규;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.180-185
    • /
    • 1989
  • In the current source type active power filter, the DC current source is implemented using an inductor with large inductance by maintaining the inductor current constantly. In this case, to compensate the loss of the switching devices of the power converter and the inductor, some real power should be supplied to the filter from the source. This process is analyzed through the equivalent circuit which expresses the loss of the switching devices and the inductor with the equivalent resistor R. This work discusses the validation of this DC side equivalent circuit and points out the problems, through the experiments using the experimental active power filter with 220V, 10KVA ratings, and suggests a more accurate equivalent circuit which puts the saturation voltage of the power transistors and the threshold voltage of the diodes into consideration.

  • PDF

TFT LCD 용 Power Inductor Full Automation Winding/Welding System 개발

  • 이우영;진경복;김경수
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2004년도 춘계학술대회 발표 논문집
    • /
    • pp.154-158
    • /
    • 2004
  • Power inductor is usually used in the field of the power circuit of a cellular phone, TFT LCD module etc.. This paper presents the development process of Power Inductor Full Automation Winding/Welding System for TFT LCD. This process, the process algorithm, high precision welding current control, design of welding head, high speed, high precision feeding mechanism, and user interface process control program technologies are included.

  • PDF

Phase Shift Full Bridge Converter for Sever Power using a New Separated Leakage Inductor Winding (SLW) Method

  • Cho, Kyu-Min;Kim, Young-Do;Cho, In-Ho;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.517-519
    • /
    • 2008
  • A new transformer winding method is proposed in this paper. Generally, PWM ZVS topologies use a leakage inductor to achieve ZVS operation. However, the leakage inductance of the transformer is not often enough to meet ZVS condition. Therefore, an additional leakage inductor is necessary, which causes large core loss because high input voltage is applied to the additional leakage inductor during a short commutation period. In this paper, a new separated leakage inductor winding (SLW) method is proposed. With the proposed winding method, a leakage inductor and a transformer can be combined in one ferrite core. Therefore, size and core loss of the additional leakage inductor can be reduced. Experimental results demonstrate that the proposed winding method can achieve a significant efficiency improvement in a 1210.8W (12V, 100.9A) prototype converter.

  • PDF

LTCC 기술을 이용한 마이크로 인덕터 및 응용 (An Integrated LTCC Inductor and Its Application)

  • 김찬영;김희준
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권11호
    • /
    • pp.680-686
    • /
    • 2004
  • An integrated inductor using the low temperature cofiring ceramics(LTCC) technology was fabricated. The inductor has Ag circular spiral coil with 16 turns (2-turn x 8-layer) and has a dimension of 11.52mm diameter and 0.71mm thick. For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured one. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1.32W output power and 1MHz switching frequency using the inductor fabricated was developed. For the converter the maximum efficiency of about 81% was obtained.

가변 인덕터를 적용한 2상 인터리브드 벅 컨버터의 전류 불평형 저감에 관한 연구 (A Study on the Reduction of Current Unbalancing of Two-phase Interleaved Buck Converter using Variable Inductor)

  • 임재성;차헌녕
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.417-424
    • /
    • 2022
  • This study proposes a current-balancing technique for an interleaved buck converter using a variable inductor and a snubber capacitor. The proposed scheme balances the inductor current by using the variable inductor and enables zero voltage switching under all load ranges. With the variable inductor, the ripple of inductor current changes according to load variation. In addition, a 1.6 kW prototype is built to verify the validity of the proposed scheme, and the experimental results are successfully obtained.

Study on Soft-Switching Transformers Inductor Boost Converter for Fuel Cell Powered Railway Vehicle

  • Jung, No-Geon;Kim, Jae-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2553-2560
    • /
    • 2018
  • In Korea, there are no instances where a hydrogen fuel cell power generation system has been used in a railway vehicle. Only the basic topology has been studied. In the previous study, conventional converters using a single switch were applied to the fuel cell power generation system. Therefore, current stress on the switch at converter on-off transitions would be large when controlling a large-capacity railway vehicle. In addition, since the input side ripple is also large, there is a problem with a shortening of the lifetime of both the fuel cell power generation system and the inductor. In this paper, a soft-switching transformer inductor boost converter for fuel cell powered railway vehicles was proposed. A technique to reduce both the switching current stress generated during on-off transitions, and the input ripple current flowing in the inductor were studied. The soft-switching TIB converter uses a transformer-type inductor to configure the entire circuit in an interleaved method, and reduces both input current ripple and the current ripple of the inductor and switch.

An Active Clamp High Step-Up Boost Converter with a Coupled Inductor

  • Luo, Quanming;Zhang, Yang;Sun, Pengju;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.86-95
    • /
    • 2015
  • An active clamp high step-up boost converter with a coupled inductor is proposed in this paper. In the proposed strategy, a coupled inductor is adopted to achieve a high voltage gain. The clamp circuit is included to achieve the zero-voltage-switching (ZVS) condition for both the main and clamp switches. A rectifier composed of a capacitor and a diode is added to reduce the voltage stress of the output rectifier diode. As a result, diodes with a low reverse-recovery time and forward voltage-drop can be utilized. Since the voltage stresses of the main and clamp switches are far below the output voltage, low-voltage-rated MOSFETs can be adopted to reduce conduction losses. Moreover, the reverse-recovery losses of the diodes are reduced due to the inherent leakage inductance of the coupled inductor. Therefore, high efficiency can be expected. Firstly, the derivation of the proposed converter is given and the operation analysis is described. Then, a steady-state performance analysis of the proposed converter is analyzed in detail. Finally, a 250 W prototype is built to verify the analysis. The measured maximum efficiency of the prototype is 95%.