• Title/Summary/Keyword: Power HIL Simulation

Search Result 25, Processing Time 0.03 seconds

Comparative Analysis of Three-Phase AC-DC Converters Using HIL-Simulation

  • Raihan, Siti Rohani Sheikh;Rahim, Nasrudin Abd.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.104-112
    • /
    • 2013
  • This paper presents a comparative evaluation of various topologies for three-phase power converters using the hardware-in-the-loop (HIL) simulation technique. Various switch-mode AC-DC power converters are studied, and their performance with respect to total harmonic distortion (THD), efficiency, power factor and losses are analyzed. The HIL-simulation is implemented in an Altera Cyclone II DE2 Field Programmable Gate Array (FPGA) Board and in the Matlab/Simulink environment. A comparison of the simulation and HIL-simulation results is also provided.

Development of FPGA Based HIL Simulator for PMS Performance Verification of Natural Liquefied Gas Carriers (액화천연가스운반선의 PMS 성능 검증을 위한 FPGA 기반 HIL 시뮬레이터 개발)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.949-955
    • /
    • 2018
  • Hardware-in-the-loop (HIL) simulation is a technique that can be employed for developing and testing complex real-time embedded systems. HIL simulation provides an effective platform for verifying power management system (PMS) performance of liquefied natural gas carriers, which are high value-added vessels such as offshore plants. However, HIL tests conducted by research institutes, including domestic shipyards, can be protracted. To address the said issue, this study proposes a field programmable gate array (FPGA) based PMS-HIL simulator that comprises a power supply, consumer, control console, and main switchboard. The proposed HIL simulation platform incorporated actual equipment data while conducting load sharing PMS tests. The proposed system was verified through symmetric, asymmetric, and fixed load sharing tests. The proposed system can thus potentially replace the standard factory acceptance tests. Furthermore, the proposed simulator can be helpful in developing additional systems for vessel automation and autonomous operation, including the development of energy management systems.

HIL Simulation of Power Management for Standalone DC Microgrids Based on Decentralized Control (분산제어 기반 독립형 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션)

  • To, Dinh Du;Le, Duc Dung;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.376-377
    • /
    • 2018
  • A hardware-in-the-loop (HIL) platform for a power management control of islanded DC microgrids is established. In order to avoid the complexity and high costs, a decentralized control based on the DC Bus Signaling (DBS) method is applied to the HIL system. The simulation results for the HIL microgrid platform have verified the effectiveness of power management strategy.

  • PDF

Control validation of Peugeot 3∞8 HYbrid4 Vehicle Using a Reduced-scale Power HIL Simulation

  • Letrouve, Tony;Lhomme, Walter;Bouscayrol, Alain;Dollinger, Nicolas
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1227-1233
    • /
    • 2013
  • The new engineering challenges lead to a control of a vehicle more and more complex. To tackle this issue, Hardware-In-the-Loop (HIL) simulation is used in the development of real-time embedded systems. In this paper, the control of a double parallel hybrid vehicle is validated using a reduced power HIL simulation. A graphical description is used in order to organize the emulation and control. Some experimental results of a versatile testbed are given for the Peugeot $3{\infty}8$ HYbrid4.

Test Platform Development of Vessel's Power Management System Using Hardware-in-the-Loop Simulation Technique

  • Lee, Sang-Jung;Kwak, Sang-Kyu;Kim, Sang-Hyun;Jeon, Hyung-Jun;Jung, Jee-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2298-2306
    • /
    • 2017
  • A PMS (Power Management System) controls vessel's power systems to improve the system efficiency and to protect a blackout condition. The PMS should be developed with considering the type and the capacity of the vessel's power system. It is necessary to test the PMS functions developed for vessel's safe operations under various sailing situations. Therefore, the function tests in cooperation with practical power systems are required in the PMS development. In this paper, a hardware-in-the-loop (HIL) simulator is developed for the purposes of the PMS function tests. The HIL simulator can be more cost-effective, more time-saved, easier to reproduce, and safer beyond the normal operating range than conventional off-line simulators, especially at early stages in development processes or during fault tests. Vessel's power system model is developed by using a MATLAB/SIMULINK software and by communicating between an OPAL-RT's OP5600 simulator. The PMS uses a Modbus communication protocol implemented using LabVIEW software. Representative tests of the PMS functions are performed to verify the validity of the proposed HIL-based test platform.

Development of Hardware In-the-Loop Simulation System for Testing Power Management of DC Microgrids Based on Decentralized Control (분산제어 기반 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션 적용 연구)

  • To, Dinh-Du;Le, Duc-Dung;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.191-200
    • /
    • 2019
  • This study proposes a hardware-in-the-loop simulation (HILS) system based on National Instruments' PXI platform to test power management and operation strategies for DC microgrids (MGs). The HILS system is developed based on the controller HIL prototype, which involves testing the controller board in hardware with a real-time simulation model of the plant in a real-time digital simulator. The system provides an economical and effective testing function for research on MG systems. The decentralized power management strategy based on the DC bus signaling method for DC MGs has been developed and implemented on the HILS platform. HILS results are determined to be similar to those of the off-line simulation in PSIM software.

Circuit Design Method to Solve the Processing Error and the Processing Speed Decreasing Problems in Multi-core Hardware In-the-Loop Simulation (Hardware In-the-Loop Simulation의 다중 코어 연산시 발생할 수 있는 연산 오류 및 연산속도 저하를 해결하기 위한 회로 구성 기법 제안)

  • CHAE, BEOM-SEOK;JEON, JAE-HYUN;KIM, KYUNG-SUE;OH, HYUN-SEOK;PARK, CHEOL-HYUN;LEE, JEONG-JOON
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.421-422
    • /
    • 2020
  • Hardware In-the-Loop simulation(HIL)은 실제 하드웨어 시스템을 실시간 모사할 수 있는 시뮬레이션 장비로 연구 및 개발 기간의 단축, 비용저감 등의 장점을 앞세워 다양한 전력전자 분야에 사용되고 있다. 실제 하드웨어를 그대로 모사하는 것이 HIL의 목적이기 때문에 HIL 장비는 검증의 실시간성과 출력된 결과의 정확성이 무엇보다도 중요하다고 할 수 있다. 하지만 코어간의 데이터를 주고받는 과정에서 HIL의 연산 속도 및 정확성을 저해하는 요인들이 발생하게 된다. 본 연구에서는 HIL 장비를 이용해 복잡한 시스템을 구현함에 있어서 연산속도 및 정확성을 저해하는 요인들을 찾아내고 이를 해결하기 위한 방법을 제안한다. 제안된 연산속도 개선 및 정확성 개선 방법의 타당성은 프로세서의 연산 속도 변화량, HIL 및 시험 결과 파형의 비교 분석을 통해 검증되었다.

  • PDF

Real-Time HIL Simulation of the Discontinuous Conduction Mode in Voltage Source PWM Power Converters

  • Futo, Andras;Kokenyesi, Tamas;Varjasi, Istvan;Suto, Zoltan;Vajk, Istvan;Balogh, Attila;Balazs, Gergely Gyorgy
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1535-1544
    • /
    • 2017
  • Advances in FPGA technology have enabled fast real-time simulation of power converters, filters and loads. FPGA based HIL (Hardware-In-the-Loop) simulators have revolutionized control hardware and software development for power electronics. Common time step sizes in the order of 100ns are sufficient for simulating switching frequency current and voltage ripples. In order to keep the time step as small as possible, ideal switching function models are often used to simulate the phase legs. This often produces inferior results when simulating the discontinuous conduction mode (DCM) and disabled operational states. Therefore, the corresponding measurement and protection units cannot be tested properly. This paper describes a new solution for this problem utilizing a discrete-time PI controller. The PI controller simulates the proper DC and low frequency AC components of the phase leg voltage during disabled operation. It also retains the advantage of fast real-time execution of switch-based models when an accurate simulation of high frequency junction capacitor oscillations is not necessary.

Prediction of the Transient Performance of the Passenger Diesel Engine with Turbocharger using HIL (HIL을 이용한 터보과급기 승용 디젤 엔진의 과도 성능 예측)

  • Chung, Jin-Eun;Jin, Young-Wook;Jeong, Dong-Young;Chung, Jae-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.127-132
    • /
    • 2009
  • The transient performance of the passenger diesel engine equipped with the variable geometry turbocharger was simulated using HIL(hardware-in-the-loop) system. The system consists of engine model as software, and the turbocharger test bench as hardware. The engine model is mean value model which is programmed by the Simulink of the Mathworks. The turbocharger test bench is composed of a blower, some sensors, and DAQ boards. A real time simulation is possible since the operating system based on the real time is included. The results show the good response for the transient characteristics. Therefore this HIL system can be used for development of the new turbocharger effectively.

Development of Hardware In the Loop System for Cyber Security Training in Nuclear Power Plants (원자력발전소 사이버보안 훈련을 위한 HIL(Hardware In the Loop) System 개발)

  • Song, Jae-gu;Lee, Jung-woon;Lee, Cheol-kwon;Lee, Chan-young;Shin, Jin-soo;Hwang, In-koo;Choi, Jong-gyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.867-875
    • /
    • 2019
  • Security awareness and training are becoming more important as cyber security incidents tend to increase in industrial control systems, including nuclear power plants. For effective cyber security awareness and training for the personnel who manage and operate the target facility, a TEST-BED is required that can analyze the impact of cyber attacks from the sensor level to the operation status of the nuclear power plant. In this paper, we have developed an HIL system for nuclear power plant cyber security training. It includes nuclear power plant status simulations and specific system status simulation together with physical devices. This research result will be used for the specialized cyber security training program for Korean nuclear facilities.