DOI QR코드

DOI QR Code

Development of Hardware In-the-Loop Simulation System for Testing Power Management of DC Microgrids Based on Decentralized Control

분산제어 기반 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션 적용 연구

  • To, Dinh-Du (Dept. of Electrical Engineering, Yeungnam University) ;
  • Le, Duc-Dung (Dept. of Electrical Engineering, Yeungnam University) ;
  • Lee, Dong-Choon (Dept. of Electrical Engineering, Yeungnam University)
  • Received : 2018.09.30
  • Accepted : 2018.12.08
  • Published : 2019.06.20

Abstract

This study proposes a hardware-in-the-loop simulation (HILS) system based on National Instruments' PXI platform to test power management and operation strategies for DC microgrids (MGs). The HILS system is developed based on the controller HIL prototype, which involves testing the controller board in hardware with a real-time simulation model of the plant in a real-time digital simulator. The system provides an economical and effective testing function for research on MG systems. The decentralized power management strategy based on the DC bus signaling method for DC MGs has been developed and implemented on the HILS platform. HILS results are determined to be similar to those of the off-line simulation in PSIM software.

Keywords

JRJJC3_2019_v24n3_191_f0001.png 이미지

Fig. 1. Classification of simulation.

JRJJC3_2019_v24n3_191_f0002.png 이미지

Fig. 2. Basic HILS configuration. (a) CHIL, (b) PHIL.

JRJJC3_2019_v24n3_191_f0003.png 이미지

Fig. 3. Hardware configuration of HILS system.

JRJJC3_2019_v24n3_191_f0004.png 이미지

Fig. 4. DC-DC Converter Circuit. (a) Buck, (b) Half-bridge.

JRJJC3_2019_v24n3_191_f0006.png 이미지

Fig. 6. Operating mode definition based on DC bus voltage.

JRJJC3_2019_v24n3_191_f0008.png 이미지

Fig. 8. Detailed control block diagram.

JRJJC3_2019_v24n3_191_f0012.png 이미지

Fig. 5. Typical DC microgrid system configuration.

JRJJC3_2019_v24n3_191_f0013.png 이미지

Fig. 7. V-I characteristic for energy resources in DC MGs. (a) Distributed generators, (b) ESS converter, (c) Utility interface converter.

JRJJC3_2019_v24n3_191_f0014.png 이미지

Fig. 9. HILS platform.

JRJJC3_2019_v24n3_191_f0015.png 이미지

Fig. 10. Performances for the transition between Mode I and Mode II.

JRJJC3_2019_v24n3_191_f0016.png 이미지

Fig. 11. Performances for the transition between Mode II and Mode III.

JRJJC3_2019_v24n3_191_f0017.png 이미지

Fig. 12. Performances for the transition between Mode I and Mode II (HILS).

JRJJC3_2019_v24n3_191_f0018.png 이미지

Fig. 13. Performances for the transition between Mode II and Mode III (HILS).

TABLE I PARAMETERS OF THE SYSTEM

JRJJC3_2019_v24n3_191_t0001.png 이미지

References

  1. R. H. Lasseter, "MicroGrids," in Proc. IEEE Power Eng. Soc. Winter Meet., pp. 305-308, 2002.
  2. R. H. Lasseter and P. Paigi, "Microgrid: A conceptual solution," in Proc. Power Electronics Specialists Conf., pp. 4285-4290, 2004.
  3. G. Byeon, T. Yoon, S. Oh, and G. Jang, “Energy management strategy of the DC distribution system in buildings using the EV service model,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 1544-1554, Apr. 2013. https://doi.org/10.1109/TPEL.2012.2210911
  4. K. Strunz, E. Abbasi, and D. N. Huu, “DC microgrid for wind and solar power integration,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 2, No. 1, pp. 115-126, 2014. https://doi.org/10.1109/JESTPE.2013.2294738
  5. T. Dragicevic, S. Sucic, J. C. Vasquez, and J. M. Guerrero, “Flywheel-based distributed bus signalling strategy for the public fast charging station,” IEEE Trans. Smart Grid, Vol. 5, No. 6, pp. 2825-2835, Nov. 2014. https://doi.org/10.1109/TSG.2014.2325963
  6. J. Schonberger, R. Duke, and S. D. Round, “DC-bus signaling: A distributed control strategy for a hybrid renewable nanogrid,” IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1453-1460, Oct. 2006. https://doi.org/10.1109/TIE.2006.882012
  7. K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, “A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage,” IEEE Trans. Power Electron., Vol. 26, No. 10, pp. 3032-3045, Oct. 2011. https://doi.org/10.1109/TPEL.2011.2127488
  8. X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang, “State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., Vol. 61, No. 6, pp. 2804-2815, Jun. 2014. https://doi.org/10.1109/TIE.2013.2279374
  9. Y. Gu, W. Li, and X. He, “Frequency-coordinating virtual impedance for autonomous power management of DC microgrid,” IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 2328-2337, Apr. 2015. https://doi.org/10.1109/TPEL.2014.2325856
  10. S. Palla, A. K. Srivastava, and N. N. Schulz, "Hardware in the loop test for relay model validation," in Proc. IEEE ESTS, pp. 449-454, May 2007.
  11. L. Wei, G. Joos, and J. Belanger, “Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system,” IEEE Trans. Ind. Electron., Vol. 57, No. 4, pp. 1137-1145, Apr. 2010. https://doi.org/10.1109/TIE.2009.2037103
  12. J. H. Jeon, J. Y. Kim, H. M. Kim, S. K. Kim, C. Cho, J. M. Kim, and K. Y. Nam, “Development of hardware in-the-loop simulation system for testing operation and control functions of microgrid,” IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 2919-2929, Dec. 2010. https://doi.org/10.1109/TPEL.2010.2078518
  13. L. Meng, T. Dragicevic, J. M. Guerrero, and J. C. Vasquez, "Dynamic consensus algorithm based distributed global efficiency optimization of a droop controlled DC microgrid," in Proc. IEEE Int. Energy Conf., pp. 1276-1283, 2014.
  14. C. Dufour and J. Belanger, “On the use of real-time simulation technology in smart grid research and development,” IEEE Trans. Ind. Appl., Vol. 50, No. 6, pp. 3963-3970, Nov. 2014. https://doi.org/10.1109/TIA.2014.2315507
  15. J. Wang, Y. Song, W. Li, J. Guo, and A. Monti, “Development of a universal platform for hardware in-the-loop testing of microgrids,” IEEE Trans. Ind. Informat., Vol. 10, No. 4, pp. 2154-2165, Nov. 2014. https://doi.org/10.1109/TII.2014.2349271
  16. M. O. Faruque, T. Strasser, G. Lauss, V. Jalili-Marandi, P. Forsyth, C. Dufour, and M. Paolone, “Real-time simulation technologies for power systems design, testing, and analysis,” IEEE Power Energy Technol. Syst. J., Vol. 2, No. 2, pp. 63-73, Jun. 2015. https://doi.org/10.1109/JPETS.2015.2427370
  17. A. S. Vijay, S. Doolla, and M. C. Chandorkar, “Real-time testing approaches for microgrids,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 5, No. 3, pp. 1356-1376, Sep. 2017. https://doi.org/10.1109/JESTPE.2017.2695486
  18. National Instruments, "PXI-8840," Retrieved from http://www.ni.com/en-gb/support/model.pxi-8840.html.
  19. National Instruments, "PXIe-7821," Retrieved from http://www.ni.com/en-gb/support/model.pxie-7821.html.
  20. National Instruments, "PXI-6723," Retrieved from http://www.ni.com/en-gb/support/model.pxi-6723.html.
  21. National Instruments, "PXIe-1078," Retrieved from http://www.ni.com/en-gb/support/model.pxie-1078.html.
  22. National Instruments, "NI SCB-68," Retrieved from http://www.ni.com/product-documentation/53441/en/.
  23. S. Bacha, I. Munteanu, and A. I. Bratcu, "Power electronic converters modeling and control: With case studies," New York, NY, USA: Springer, 2014.
  24. J. M. Guerrero, M. Chandorkar, T. L. Lee, and P. C. Loh, “Advanced control architectures for intelligent microgrids-Part I: Decentralized and hierarchical control,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1254-1262, Apr. 2013. https://doi.org/10.1109/TIE.2012.2194969
  25. T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., Vol. 31, No. 7, pp. 4876-4891, Jul. 2016. https://doi.org/10.1109/TPEL.2015.2478859
  26. Y. Ito, Y. Zhongqing, and H. Akagi, "DC micro-grid based distribution power generation system," in Proc. IEEE IPEMC, Vol. 3, pp. 1740-1745, 2004.