• 제목/요약/키워드: Power Factor Control

검색결과 1,430건 처리시간 0.027초

단상시스템에서 벡터적(vector product)에 의한 동기 루프 (Synchronization loop by vector product in single-phase system)

  • 배기훈;기상우;조국춘;최종묵
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.219-225
    • /
    • 1998
  • A Diode bridge rectifier and a phase-controlled thyristor bridge rectifier generate harmonics in power system. Nowadays, power factor and harmonics are important performance in electrical equipment for railway vehicle. Many researchers have been trying to improve the power factor and ac-side harmonics. Therefore the PWM converter has been used to operate at unity power factor and to reduce ac-side current harmonics. This paper proposes the synchronization loop by vector product in single-phase PWM converter. The proposed control method can realize the sinusolidal input current waveform and the effective unity power factor. The validity of the proposed control method is verified through the experimental result.

  • PDF

확장된 동작 영역을 갖는 3상 전압원 PWM 컨버터의 최적 제어 (Optimal Control of a Three-Phase Voltage-Source PWM Converter with an Expanded Operation Region)

  • 민동기;안성찬;현동석;최종률
    • 전력전자학회논문지
    • /
    • 제3권2호
    • /
    • pp.156-164
    • /
    • 1998
  • 3상 전압원 PWM 컨버터의 동작 영역을 동기 좌표계의 전류 벡터 평면에서 구분하고 그 특징을 설명하였다. 그 중 감역률 영역에서는 주어진 부하에 해당하는 입력 전류를 단위 역률로 제어하는 경우, 입력 전류는 왜곡되고 DC 링크 전압에는 맥동과 제어 오차가 발생하게 되어 주어진 부하 조건에서는 좋은 제어 성과를 얻을 수 없다. 본 논문에서는 이러한 문제점을 해결하는 최적 전류 벡터를 선정하는 방법을 제안하였다. 최적 전류 벡터의 선정으로 입력 전류를 가능한 최대 역률로서 정현적으로 제어하는 동시에 안정한 DC 링크 전압을 제어할 수 있게 하여 3상 전압원 PWM 컨버터의 동작 영역을 확장시킬 수 있다. 제안된 제어 방법을 실험을 통하여 증명하였다.

Single-Phase Bridgeless Zeta PFC Converter with Reduced Conduction Losses

  • Khan, Shakil Ahamed;Rahim, Nasrudin Abd.;Bakar, Ab Halim Abu;Kwang, Tan Chia
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.356-365
    • /
    • 2015
  • This paper presents a new single phase front-end ac-dc bridgeless power factor correction (PFC) rectifier topology. The proposed converter achieves a high efficiency over a wide range of input and output voltages, a high power factor, low line current harmonics and both step up and step down voltage conversions. This topology is based on a non-inverting buck-boost (Zeta) converter. In this approach, the input diode bridge is removed and a maximum of one diode conducts in a complete switching period. This reduces the conduction losses and the thermal stresses on the switches when compare to existing PFC topologies. Inherent power factor correction is achieved by operating the converter in the discontinuous conduction mode (DCM) which leads to a simplified control circuit. The characteristics of the proposed design, principles of operation, steady state operation analysis, and control structure are described in this paper. An experimental prototype has been built to demonstrate the feasibility of the new converter. Simulation and experimental results are provided to verify the improved power quality at the AC mains and the lower conduction losses of the converter.

고감도 삼상력률계전기에 관한 연구 (Study on the High Sensitive Three Phase Power Factor Meter and Relay)

  • 박정후
    • 수산해양기술연구
    • /
    • 제16권1호
    • /
    • pp.43-47
    • /
    • 1980
  • The author designed and tested the high sensitive three-phase power factor meter and relay circuit, and dealt with the circuit to detect the phase of the current and the voltage. An operational amplifier comparator circuit and two single-phase transformers are used to control and detect the phase angle between the current and the voltage. The results obtained are as follows: 1. Converting the sine wave input current into the constant amplitude rectangular wave form by using a transistor chopper circuit, the power factor can be measured precisely over the load current of 0.08 A. 2. Using the moving coil type current meter, the power factor meter can be read in uniform . scale all over the range. 3. Using the three-phase power factor meter, the power factor relay which works at any power factor can be made.

  • PDF

Input AC Voltage Sensorless Control Scheme for a Three-Phase PWM Rectifier in Wind Power Generation System

  • Wu, YanJun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.472-476
    • /
    • 2012
  • In this paper, a sensorless control scheme for a three-phase bi-directional voltage-type PWM rectifier in wind power generation system that operates without the input AC voltage sensors (generator side) is described. The basic principles and classification of the PWM rectifier are analyzed, and then the three-phase mathematical model of the input AC voltage sensorless PWM rectifier control system is established. The proposed scheme has been developed in order to lower the cost of the three-phase PWM rectifier but still achieve excellent output voltage regulation, limited current harmonic content, and unity input power factor.

Boost 컨버터와 계통연계 인버터를 이용한 풍력발전의 센서리스 MPPT 제어 (Sensorless MPPT Control using a Boost Converter and a Grid Side Inverter in Wind Power Generation Systems)

  • 김도윤;이준민;김영석
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1372-1377
    • /
    • 2011
  • This paper proposes the control method of MPPT(maximum power point tracking) for the wind energy generation system using the duty ratio control of boost type DC-DC converter. For a lower cost and a higher reliability, the wind and the generator velocity sensors are removed. MPPT control is implemented by changing the duty ratio of the boost converter. Chain rule is applied by using each function. The grid side inverter is controlled to regulate unity power factor. The proposed control method was analyzed mathematically and verified by the computer simulation using PSIM.

능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선 (Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode)

  • 윤신용;백수현;김용;김철진;어창진
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권8호
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF

Bridgeless Buck PFC Rectifier with Improved Power Factor

  • Malekanehrad, Mahdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.323-331
    • /
    • 2018
  • Buck power factor correction (PFC) converters, compared with conventional boost PFC converters, exhibit high efficiency performance in the entire range of universal line voltage. This feature has gotten more attention for eliminating the zero crossing dead angle of buck PFC rectifiers. Furthermore, bridgeless structures for the reduction of conduction losses have been proposed. The aim of this paper is to introduce a single-phase buck rectifier that simultaneously has unity power factor (PF) and bridgeless structure while operating in the continuous conduction mode (CCM). For this purpose, two auxiliary flyback converters without any active switches are applied to a bridgeless buck rectifier to eliminate the zero crossing dead angle and achieve unity power factor, low total harmonic distortion (THD) and high efficiency. The operation and design considerations of the proposed rectifier are verified on a 150W, 48V prototype using a conventional peak-current-mode control. The measurement results show that the proposed rectifier has nearly unity power factor, THD less than 7% and high efficiency.

역률 보정을 위한 정현 컨버터의 효율개선 (An Efficiency improvement of Sinusoidal Converter for Power Factor Corection)

  • 서재호;이희승
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.432-435
    • /
    • 1997
  • This Paper proposes a novel sinusoidal converter which improves input power factor and input current waveform without any complicated switching modulation such as a pulse width modulation or a complicated feed-back control. It is composed of a full bridge diode, a pair of capacitors, a pair of inductors and a pair of switching devices. The configuration and control strategy are both simple however, the sinusoidal converter effectively reduces reactive power and hamonics included in a input line current. Excellent behavior of the proposed converter is verified by theoretical analysis and experimental results.

  • PDF

전류형 능동 교류 전력 필터의 해석 (Analysis of Current-Fed Active AC Power Filters)

  • Choe, Gyu-Ha
    • 대한전기학회논문지
    • /
    • 제38권6호
    • /
    • pp.441-450
    • /
    • 1989
  • A control technique for current-fed filters is proposed which not only eliminates the harmonic current, but also controls the reactive power at the ac sides of PWM inverter-induction motor drive system. Injecting the proposed PWM current enables the harmonic components of orders not greater than the number of pulses per half-cycle to be removed completely. Also it enables the input fundamental power factor to become unity and hence total input power factor can be improved greatly. Digital simulation is performed to investigate the theoretical output characteristics of the current-fed filters by the proposed control technique.

  • PDF