DOI QR코드

DOI QR Code

Bridgeless Buck PFC Rectifier with Improved Power Factor

  • Malekanehrad, Mahdi (Department of Electrical and Computer Engineering, Isfahan University of Technology) ;
  • Adib, Ehsan (Department of Electrical and Computer Engineering, Isfahan University of Technology)
  • Received : 2017.02.15
  • Accepted : 2017.08.27
  • Published : 2018.03.20

Abstract

Buck power factor correction (PFC) converters, compared with conventional boost PFC converters, exhibit high efficiency performance in the entire range of universal line voltage. This feature has gotten more attention for eliminating the zero crossing dead angle of buck PFC rectifiers. Furthermore, bridgeless structures for the reduction of conduction losses have been proposed. The aim of this paper is to introduce a single-phase buck rectifier that simultaneously has unity power factor (PF) and bridgeless structure while operating in the continuous conduction mode (CCM). For this purpose, two auxiliary flyback converters without any active switches are applied to a bridgeless buck rectifier to eliminate the zero crossing dead angle and achieve unity power factor, low total harmonic distortion (THD) and high efficiency. The operation and design considerations of the proposed rectifier are verified on a 150W, 48V prototype using a conventional peak-current-mode control. The measurement results show that the proposed rectifier has nearly unity power factor, THD less than 7% and high efficiency.

Keywords

E1PWAX_2018_v18n2_323_f0001.png 이미지

Fig. 1. Proposed bridgeless unity power factor buck rectifier.

E1PWAX_2018_v18n2_323_f0002.png 이미지

Fig. 2. Operation of the positive and negative half-line cycles. (a)Positive half-line cycle. (b) Negative half-line cycle.

E1PWAX_2018_v18n2_323_f0003.png 이미지

Fig. 3. Theoretical key waveforms.

E1PWAX_2018_v18n2_323_f0004.png 이미지

Fig. 4. Equivalent circuits of the three modes during the positivehalf-line cycle. (a) Mode 1. (b) Mode 2. (c) Mode 3.

E1PWAX_2018_v18n2_323_f0005.png 이미지

Fig. 5. An equivalent circuit of the second mode.

E1PWAX_2018_v18n2_323_f0006.png 이미지

Fig. 6. Schematic of the implemented circuit.

E1PWAX_2018_v18n2_323_f0007.png 이미지

Fig. 7. Measured line waveforms at Po=150 W. (a) Line current and voltage waveforms (time: 5 ms/div). (b) Measured odd harmoniccomponents of the line current with the Class D requirements of JIS C 6100-3-2.

E1PWAX_2018_v18n2_323_f0008.png 이미지

Fig. 8. Measured waveforms at Po=150 W. (a) Low frequency voltages (10 V/div; time: 5 ms/div). (b) Switching currents at the peak ofthe line voltage (8 A/div; time: 10 μs/div). (c) Switching voltages at the peak of the line voltage (time: 10 μs/div).

E1PWAX_2018_v18n2_323_f0009.png 이미지

Fig. 9. Measured ef?ciency, PF and THD compared with outputpower.

TABLE I COMPARISON OF THE PROPOSED RECTIFIER AND THE TOPOLOGIES IN [21]-[25]

E1PWAX_2018_v18n2_323_t0001.png 이미지

TABLE II COMPARISON OF THE PF, THD AND EFFICIENCY OF THE PROPOSED RECTIFIER AND STATE-OF-THE-ART BUCK RECTIFIERS FOR 110 VAC LINE VOLTAGE

E1PWAX_2018_v18n2_323_t0002.png 이미지

References

  1. Limits- Limits for harmonic current emissions (equipment input current ${\leq}$ 16A per phase), IEC 61000-3-2: EMC Part 3-2, 2006.
  2. X. Wu, J. Yang, J. Zhang, and M. Xu, "Design considerations of soft-switched buck PFC converter with constant on-time (COT) control," IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3144-3152, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2145391
  3. L. Huber, L. Gang, and M. M. Jovanovic, "Design-oriented analysis and performance evaluation of buck PFC front end," IEEE Trans. Power Electron., Vol. 25, No. 1, pp. 85-94, Jan. 2010. https://doi.org/10.1109/TPEL.2009.2024667
  4. Y. Jang and M. M. Jovanovic, "Bridgeless high-powerfactor buck converter," IEEE Trans. Power Electron., Vol. 26, No. 2, pp. 602-611, Feb. 2011. https://doi.org/10.1109/TPEL.2010.2068060
  5. B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari "A review of single-phase improved power quality AC-DC converters," IEEE Trans. Ind. Electron., Vol. 50, No. 5, pp. 962-981, Oct. 2003. https://doi.org/10.1109/TIE.2003.817609
  6. T. J. Liang, L. S. Yang, and J. F. Chen, "Analysis and design of a single-phase AC/DC step-down converter for universal input voltage," IET Electric Power Appl., Vol. 1, No. 5, pp. 778-784, Sep. 2007. https://doi.org/10.1049/iet-epa:20060471
  7. A. Emrani, M. R. Amini, and H. Farzaneh-fard, "Soft single switch resonant buck converter with inherent PFC feature," IET Power Electron., Vol. 6, No. 3, pp. 516-522, Mar. 2013. https://doi.org/10.1049/iet-pel.2012.0092
  8. A. A. Fardoun, E. H. Ismail, N. M. Khraim, A. J. Sabzali and M. A. Al-Saffar, "Bridgeless high-power-factor buckconverter operating in discontinuous capacitor voltage mode," IEEE Trans. Ind. Appl., Vol. 50, No. 5, pp. 3457- 3467, Sep./Oct. 2014. https://doi.org/10.1109/TIA.2014.2305771
  9. X. Xie, C. Zhao, Q. Lu, and S. Liu "A novel integrated buck-flyback nonisolated PFC converter with high power factor," IEEE Trans. Ind. Electron., Vol. 60, No. 12, pp. 5603-5612, Dec. 2013. https://doi.org/10.1109/TIE.2012.2232256
  10. Y. Ohnuma and J. I. Itoh, "A novel single-phase buck PFC AC-DC converter with power decoupling capability using an active buffer," IEEE Trans. Ind. Appl., Vol. 50, No. 3, pp. 1905-1914, May/Jun. 2014. https://doi.org/10.1109/TIA.2013.2279902
  11. H. Endo, T. Yamashita, and T. Sugiura, "A high-powerfactor buck converter," in Proc. IEEE Power Electron. Spec. Conf. PESC '92 Rec., pp. 1071-1076, 1992.
  12. S.-K. Ki and D. D.-C. Lu, "A high step-down transformerless single-stage single-switch AC/DC converter," IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 36-45, Jan. 2013. https://doi.org/10.1109/TPEL.2012.2195505
  13. D. Gacio, J. M. Alonso, A. J. Calleja, J. Garcia, and M. Rico-Secades, "A universal-input single-stage high-powerfactor power supply for HB-LEDs based on integrated buck-flyback converter," IEEE Trans. Ind. Electron., Vol. 58, No. 2, pp. 589-599, Feb. 2011. https://doi.org/10.1109/TIE.2010.2046578
  14. D. D.-C. Lu and S-K. Ki, “Light-load efficiency improvement in buck-derived single-stage single-switch PFC converters,” IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2105-2110, May 2013. https://doi.org/10.1109/TPEL.2012.2221744
  15. Y. W. Lo and R. J. King, "High performance ripple feedback for the buck unity-power-factor rectifier," IEEE Trans. Power Electron., Vol. 10, No. 2, pp. 158-163, March 1995. https://doi.org/10.1109/63.372600
  16. A. Ramezan Ghanbari, E. Adib, and H. Farzanehfard, "Single-stage single-switch power factor correction converter based on discontinuous capacitor voltage mode buck and flyback converters," IET Power Electron., Vol. 6, No. 1, pp. 146-152, Jan. 2013. https://doi.org/10.1049/iet-pel.2012.0191
  17. J.M. Alonso, M.A. Dalla Costa, and C. Ordiz, "Integrated buck-flyback converter as a high-power-factor off-line power supply," IEEE Trans. Ind. Electron., Vol. 55, No. 3 pp. 1090-1100, Mar. 2008.
  18. A. Emrani, M. Mahdavi, and E. Adib, "Soft switching bridgeless PFC buck converters," J. Power Electron., Vol. 12, No. 2, pp. 268-275, Mar. 2012. https://doi.org/10.6113/JPE.2012.12.2.268
  19. H. Choi, "Interleaved boundary conduction mode (BCM) buck power factor correction (PFC) converter," IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 2629-2634, Jun. 2013. https://doi.org/10.1109/TPEL.2012.2222930
  20. C. Bing, X. Yun-Xiang, H. Feng, and C. Jiang-Hui, "A novel single-phase buck pfc converter based on one-cycle control," in Proc. CES/IEEE Int. Power Electron. Motion Control Conf. (IPEMC), Shanghai, pp. 1401-1405, 2006.
  21. G. Spiazzi, "Analysis of buck converters used as power factor preregulators," Proc. IEEE Power Electron. Spec. Conf. PESC '97 Rec., pp. 564-570, 1997.
  22. X. Xie, C. Zhao, L. Zheng, and S. Liu, "An improved buck PFC converter with high power factor," IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2277-2284, May 2013. https://doi.org/10.1109/TPEL.2012.2214060
  23. J. Zhang, C. Zhao, S. Zhao, and X. Wu "A family of single-phase hybrid step-down PFC converters," IEEE Trans. Power Electron., Vol. 32, No. 7, pp. 5271-5281, July 2017. https://doi.org/10.1109/TPEL.2016.2604845
  24. J. Xu, M. Zhu, and S. Yao, "Distortion elimination for buck PFC converter with power factor improvement," J. Power Electron., Vol. 15, No. 1, pp. 10-17, Jan. 2015. https://doi.org/10.6113/JPE.2015.15.1.10
  25. C. R. Lee, W. T. Tsai, and H. S. Chung, "A buck-type power-factor-correction circuit," in Proc. IEEE Int. Power Electron. Drive Systems Conf. (PEDS), pp. 586-590, 2013.