• 제목/요약/키워드: Power Facility

검색결과 1,286건 처리시간 0.025초

스팀터빈의 공력성능 평가를 위한 공기 상사실험 (Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine)

  • 임병준;이은석;이익형;김영상;권기범
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.73-79
    • /
    • 2003
  • The steam turbine efficiency is an important factor in power plant. Accurate evaluation of steam turbine performance is essential. However, it is not easy to evaluate the steam turbine performance due to its high temperature and high pressure circumstance. Therefore most steam turbine performance tests were conducted by air similarity test. This paper described a test program for air similarity test of steam turbine at Korea Aerospace Research Institute. A test facility has been designed and built to evaluate aerodynamic performance of turbines. The test facility consists of air supply system, single stage test section, power absorption system, instrumentation and auxiliary system. For evaluation of steam turbine performance, the test of single stage axial turbine air similarity performance was conducted and uncertainty analysis was performed.

  • PDF

원전구조물 고강도철근 모듈화를 위한 용접방법 성능평가 (Performance Evaluation of Welding Method for Modular of High-Strength Reinforcing Bars to the Nuclear Power Plant Structures)

  • 임상준;이한우;김형섭;방창준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.278-280
    • /
    • 2013
  • To minimize construction quantity of nuclear facility, it is required to reduce reinforcing bar amount and solve reinforcing bar concentration and for this, it is necessary to develop application design technology and modular of high strength reinforcing bar. Hence, KHNP reduces excessive reinforcing bar amount which can cause possibility of poor construction of concrete through design standard development and modular of nuclear facility structure using high strength reinforcing bar to raise economics and has its purpose to maintain high-level safety and durability as they are.

  • PDF

Heat transfer characteristics of redan structure in large-scale test facility STELLA-2

  • Yoon, Jung;Lee, Jewhan;Kim, Hyungmo;Lee, Yong-Bum;Eoh, Jaehyuk
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1109-1118
    • /
    • 2021
  • The construction of STELLA-2 facility is on-going to demonstrate the safety system of PGSFR and to provide comprehensive understanding of transient behavior under DBEs. Considering that most events are single-phase natural circulation flow with slow transient, STELLA-2 was designed with reduced-height of 1/5 length scale. The ratio of volume to surface area in the vessel can relatively increase resulting in excessive heat transfer. Therefore, a steady-state thermal-hydraulic analysis was performed and the effect of design change to reduce the heat transfer through redan was investigated. The heat transfer through single wall redan in STELLA-2 was 3% of the core power, comparable to 1% of the core power in PGSFR. By applying the insulated redan, about 70% of decrease effect was observed. The effect on transient behavior was also evaluated. The conclusion of this study was directly applied to the STELLA-2 design and the modified version is under construction.

인공지능을 적용한 전력 시스템을 위한 보안 가이드라인 (Guideline on Security Measures and Implementation of Power System Utilizing AI Technology)

  • 최인지;장민해;최문석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.399-404
    • /
    • 2020
  • There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.

중.저준위 방사성폐기물 처분장의 지상시설에 대한 지진 취약도 평가 (Seismic Fragility Evaluation of Surface Facility Structures in Intermediate-Low Level Radioactive Waste Repository)

  • 박준희;김민규;최인길
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2012
  • 방사성폐기물의 처리과정에서 발생한 설계하중 이상의 지진은 방사성 물질을 외부로 노출시킬 수 있으므로 방사성폐기물 처분장은 설계시 지진에 대하여 충분한 여유도를 가지도록 설계되어야 한다. 본 연구에서는 방폐장의 지상구조물에 대한 지진성능을 평가하기 위하여 지진 취약도 분석을 수행하였다. 지진 취약도 평가에 의하면, 해석모델로 선정된 인수저장 시설과 방사성폐기물 건물은 장방형의 구조물로써 구조물의 축에 따라 지진 성능이 약 23%~43% 다르게 나타났다. 최소 손상수준을 기준으로 할 경우 인수저장시설과 방사성폐기물 건물의 HCLPF성능은 각각 0.52g와 0.93g로 나타났으며, 방사성폐기물 건물은 원전의 격납건물과 유사한 지진성능을 보였다.

건축물에 시설되는 수변전설비 내진설계 방안 (The Plan on the Seismic Design of Electrical Facility Installed in the Building)

  • 김기현;이상익;배석명;조성국
    • 조명전기설비학회논문지
    • /
    • 제23권2호
    • /
    • pp.89-95
    • /
    • 2009
  • 최근 한반도 주변국인 일본, 중국 등에서 크고 작은 지진 발생으로 많은 인명 및 재산 피해가 발생함에 따라 국내에서도 지진발생 추이 및 지진 피해 등 지진위험에 대한 관심이 높아지고 있다. 본 논문은 지진 발생시 건축물에서 위급상황에 대한 대처 및 여러 가지 구제 활동에 필수적인 전원공급 장치인 수변전실의 전기설비 지진 대책에 관하여 국내 현황 및 문제점을 분석하였다. 또한 국내 건축구조설계 기준과 일본의 건축전기설비 내진 설계시공 매뉴얼을 참조하여 건축물 내에 시설되는 수변전설비의 내진 설계 방향을 제시하였다. 본 논문은 전기기기 및 배관 설비 별 상세 설계 방법 제시와 설계 및 시공에 대한 신뢰성 검증을 위한 검사 기준 제시에 적용될 수 있을 것으로 사료된다.

제주지역 풍력발전기에 의한 전력계통운영 영향분석 (Power Network's Operation Influence Analysis of Wind Power Plant in Jeju island)

  • 김영환;최병천;장시호;김세호;좌종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.127-129
    • /
    • 2005
  • Construction of wind power plant is increasing rapidly because Jeju island is known as the most suitable place for wind power plant. Rut wind power plant is difficult electric power control and it has a rapid electric power fluctuation. Such a problem has a bad influence on electric power network in small electric network like Jeju. Therefore, we forecast the amount of wind power plant construction by weather information and the rate of utilization for existing facility. We investigate the contribution degree for electric Power demand, economic effect, the case of power network influence. So we forecast influence of wind power plant for Jeju power network's operation in the near future.

  • PDF

원자력발전소 직류 전력계통의 충전기 신뢰도 향상방안 연구 (A Study on Battery Charger Reliability Improvement of Nuclear Power Plants DC Distribution System)

  • 임혁순;김두현
    • 한국안전학회지
    • /
    • 제25권2호
    • /
    • pp.24-28
    • /
    • 2010
  • The nuclear power Plant onsite AC electrical power sources are required to supply power to the engineering safety facility buses if the offsite power source is lost. Typically, Diesel Generators are used as the onsite power source. The 125 VAC buses are part of the onsite Class 1E AC and DC electrical power distribution system. The DC power distribution system ensure the availability of DC electrical power for system required to shutdown the reactor and maintain it in a safety condition after an anticipated operational occurrence or a postulated Design Base Accident. Recently, onsite DC power supply system trip occurs the loss of system function. To obtain the performance such as reliability and availability, we analyzed the cause of battery charger trip and described the improvement of DC power supply system reliability. Finally, we provide reliability performance criteria of charger in order to ensure the probabilistic goals for the safety of the nuclear power plants.

발전플랜트의 전력변환기 고장사례 분석 (An analysis about failures of the power converter in power plant)

  • 한석우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.554-555
    • /
    • 2012
  • The failures in the power plant can lead to a dangerous situation according to the demand and supply of the electric power. The failure times of the domestic plant happens very often, and it has been reported as a significant loss by the power sales. Therefore, the power plant is demanded to maintain very well in order to produce a high quality of power. The rate of failures by the electricity facility is filled with 40[%] among the trouble in the failures of the power plant. The failures of power plant can cause serious accidents, magnificent losses, and chaos in our society. So, we require a significant plan to reduce such a serious problem. In this paper, I analysis the failure case of power converter in power plant, and I offer the better solution to be able to prevent the failures from power plant.

  • PDF