• Title/Summary/Keyword: Power Diode

Search Result 1,510, Processing Time 0.037 seconds

Comparison of Conventional DC-DC Converter and a Family of Diode-Assisted DC-DC Converter in Renewable Energy Applications

  • Zhang, Yan;Liu, Jinjun;Ma, Xiaolong;Feng, Junjie
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.203-216
    • /
    • 2014
  • In the conventional dc-dc converter, a pair of additional diode and the adjacent passive component capacitor/inductor can be added to the circuit with an X-shape connection, which generates a family of new topologies. The novel circuits, also called diode-assisted dc-dc converter, enhance the voltage boost/buck capability and have a great potential for high step-up/step-down power conversions. This paper mainly investigates and compares conventional dc-dc converter and diode-assisted dc-dc converter in wide range power conversion from the aspects of silicon devices, passive components requirements, electro-magnetic interference (EMI) and efficiency. Then, a comprehensive comparison example of a high step-up power conversion system was carried out. The two kinds of boost dc-dc converters operate under the same operation conditions. Mathematical analysis and experiment results verify that diode-assisted dc-dc converters are very promising for simultaneous high efficiency and high step-up/step-down power conversion in distributed power supply systems.

Estimation of Output Power for PV Module with Damaged Bypass Diode using MATLAB (Matlab을 이용한 손상된 바이패스 다이오드가 포함된 PV 모듈의 출력 추정)

  • Shin, Woogyun;Go, Seokhwan;Ju, Youngchul;Chang, Hyosik;Kang, Gihwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.63-71
    • /
    • 2016
  • Installed PV module in field is affected by shading caused by various field environmental factors. Bypass diodes are installed in PV module for preventing a power loss and degradation of PV module by shading. But, Bypass diode is easily damaged by surge voltage and has often initial a defect. This paper propose the electric characteristic variation and the power prediction of PV module with damaged bypass diode. Firstly, the resistance for normal bypass diode and damaged bypass diode of resistance was measured by changing the current. When the current increases, the resistance of normal bypass diode is almost constant but the resistance of damaged bypass diode increases. Next, To estimate power of PV module by damaged bypass diode, the equation for the current is derived using solar cell equivalent circuit. Finally, the derived equation was simulated by using MatLab tools, was verified by comparing experimental data.

Characteristics variation of PV module by damaged bypass diodes

  • Sin, U-Gyun;Jeong, Tae-Hui;Go, Seok-Hwan;Gang, Gi-Hwan;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.424.2-424.2
    • /
    • 2016
  • Solar cell converts light energy to electric energy. But a solar cell generates low power, PV module is fabricated by connected in series with dozens of solar cell. Owing to solar cell connected in series, power of PV module is influenced by shading or mismatch power of solar cells. To prevent power loss of PV module by shading or mismatch current, Bypass diodes are installed in PV module. Bypass diode operating reverse voltage by shading or mismatch power of solar cells bypass mismatch current. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we confirm characteristics variation of PV module with damaged bypass diode. As a result, power of PV module with damaged bypass diode is reduced and Temperature of that is increased.

  • PDF

Development of Boost Chopper with Built New Renewable Energy in Grid-Connected Distributed Power System (승압 초퍼 기능이 내장된 새로운 태양광 발전용 파워컨디셔너의 개발)

  • Mun, Sang-Pil;Lee, Su-Haeng;Kim, Young-Mun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.361-367
    • /
    • 2014
  • This paper is related to a new solar power conditioner for a built-in step-up chopper function. In the first step-up chopper proposed solar PV power conditioner for mutually connected in series with the input voltage of the bypass diodes are respectively connected to the positive terminal should install the mutual boosting chopper diode connected in series with the boost chopper switching element between the two power supply and at the same time the first and the second was connected to a second diode and a resonance inductor and a snubber capacitor in series with each other. And the common connection point between the bypass diode and the step-up chopper and the step-up chopper diode common connection point of the switching elements of the input voltage was set to the boost inductor for storing energy. In addition, between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point of the first auxiliary diode and the second common connection point of the auxiliary diode was provided, the resonance capacitor. Between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point and the common connection point of the resonance inductor snubber capacitor and connecting the third secondary diode, between two power supply lines is characterized by configuring the DC link capacitor bus lines in parallel. Therefore, it is possible to suppress the switching loss through, DC link bus lines, as well as there could seek miniaturization and weight reduction of the power conditioner itself by using a common capacitor of the non-polar non-polar electrolytic capacitor having a capacitor, the service life of the circuit can be extended and it is possible to greatly reduce the loss can be greatly improve the reliability of the product and the operation of the product itself.

Power Conversion Circuits using SiC Schottky Barrier Diode (SiC 다이오드를 이용한 전력변환회로)

  • Lee, Yoo-Shin;Oh, Duk-Jin;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.192-195
    • /
    • 2001
  • In this report, we firstly have investigated the electrical characteristics of silicon carbide (SiC) schottky barrier diode and compared the characteristics to those of conventional Si diode through simulation and experiment. Secondly we have investigated the influence of two kinds of diodes to the power conversion circuit of the systems. From the investigation results it is verified that SiC schottky barrier diode is more superior to Si diode in thermal and reverse recovery, characteristics, which are the important factors in the size reduction and higher reliability of the systems. Finally though the experiment applied to PFC(Power Factor Correction) circuits, we precisely verified excellency to thermal characteristic of SiC schottky barrier diode any other diode.

  • PDF

Design and Fabrication of MMIC Limiter with GaAs PIU Diode (GaAs PIN Diode를 이용한 MMIC 리미터 설계 및 제작)

  • 정명득;강현일
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.625-629
    • /
    • 2003
  • Low loss and high power MMIC limiters with GaAs PM diode were designed and fabricated. The new epitaxial structure of GaAs PIN diode was proposed in order to increase the high power capability. 2 types of limiter circuits have been designed and the limiting powers have been measured. Results indicated that the limiting power was depended on the circuit topology. Limiting power levels of 2-stage limiters are measured 16 ㏈m and 22 ㏈m at 14 ㎓, respectively.

50V Power MOSFET with Improved Reverse Recovery Characteristics Using an Integrated Schottky Body Diode (Schottky Body Diode를 집적하여 향상된 Reverse Recovery 특성을 가지는 50V Power MOSFET)

  • Lee, Byung-Hwa;Cho, Doo-Hyung;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.94-100
    • /
    • 2015
  • In this paper, 50V power U-MOSFET which replace the body(PN) diode with Schottky is proposed. As already known, Schottky diode has the advantage of reduced reverse recovery loss than PN diode. Thus, the power MOSFET with integrated Schottky integrated can minimize the reverse recovery loss. The proposed Schottky body diode U-MOSFET(SU-MOS) shows reduction of reverse recovery loss with the same transfer, output characteristic and breakdown voltage. As a result, 21.09% reduction in peak reverse current, 7.68% reduction in reverse recovery time and 35% improvement in figure of merit(FOM) are observed when the Schottky width is $0.2{\mu}m$ and the Schottky barrier height is 0.8eV compared to conventional U-MOSFET(CU-MOS). The device characteristics are analyzed through the Synopsys Sentaurus TCAD tool.

Analysis on thermal & electrical characteristics variation of PV module with damaged bypass diodes (PV 모듈 내 바이패스 다이오드 손상에 의한 열적 전기적 특성 변화 분석)

  • Shin, Woo-Gyun;Jung, Tae-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • PV module is conventionally connected in series with some solar cell to adjust the output of module. Some bypass diodes in module are installed to prevent module from hot spot and mismatch power loss. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we study the thermal and electrical characteristics change of module with damaged bypass diode to easily find module with damaged bypass diode in photovoltaic system consisting of many modules. Firstly, the temperature change of bypass diode is measured according to forward and reverse bias current flowing through bypass diode. The maximum surface temperature of damaged bypass diode applied reverse bias is higher than that of normal bypass diode despite flowing equal current. Also, the output change of module with and without damaged bypass diode is observed. The output of module with damaged bypass diode is proportionally reduced by the total number of connected solar cells per one bypass diode. Lastly, the distribution temperature of module with damaged bypass diode is confirmed by IR camera. Temperature of all solar cells connected with damaged bypass diode rises and even hot spot of some solar cells is observed. We confirm that damaged bypass diodes in module lead to power drop of module, temperature rise of module and temperature rise of bypass diode. Those results are used to find module with a damaged bypass diode in system.

Simulation of Luminance and Uniformity of LGP According to the Laser Scattering Pattern (렌즈형 광섬유를 이용하여 펄스형 반도체 레이저 Beam Shaping 및 증폭 기술 연구)

  • Kwon, Oh-Jang;Kim, Ryun-Kyung;Shim, Young-Bo;Han, Young-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.254-258
    • /
    • 2010
  • We investigate an optical technique for beam shaping and optical amplification of a pulsed laser diode without variation of its original properties, such as repetition rate and pulse duration. The horizontal and longitudinal sizes of the pulsed laser diode are 300 and $2{\mu}m$, respectively, and its output power is $1.1mW/cm^2$. The multimodal and elliptical pulse shape of the laser diode is converted to the single-modal and Gaussian pulse shape by using a lensed optical fiber. Since the single-modal lensed fiber coupling from the multimodal pulsed laser diode degrades the output power severely, the output power of the pulsed laser diode is dramatically enhanced by using an optical amplification method based on master oscillated power amplification (MOPA). The pulse qualities of the laser diode are not changed after amplifying the pulse power and the output power was finally measured to be $29mW/cm^2$.

A DLRF(Diode Laser Range Finder) Using the Cumulative Binary Detection Algorithm (레이저 다이오드를 이용한 이진 신호누적 방식의 거리측정기 기술)

  • Yang, Dong-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.152-159
    • /
    • 2007
  • In this paper, a new design technique on the LRF which is useful for low power laser and a CBDA(Cummulative Binary Detection Algorithm) is proposed. The LD(Laser Diode) and Si-APD(Silicon Avalanche Photo Diode) are used for saving a power. In order to prove the detection range, the Si-APD binary data are accumulated before the range computation and the range finding algorithm. A prototype of the proposed DLRF(Diode Laser Range Finder) system was made and tested. An experimental result shows that the DLRF system have the same detection range using a less power(almost 1/32) than an usual military LRF. The proposed DLRF can be applied to the Unmanned Vehicles, Robot and Future Combat System of a tiny size and a low power LRF.