• Title/Summary/Keyword: Power Cables

Search Result 677, Processing Time 0.029 seconds

Insulation Aging Diagnostics of Submarine Medium Voltage Power Cables (배전급 해저케이블의 절연열화진단)

  • Mo, Jong-Myung;Yi, Dong-Young;Song, Kwang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.149-152
    • /
    • 2001
  • In this work, we have conducted insulation aging assessment and maintenance for submarine medium voltage power cable systems to discriminate and maintain bad cables economically. We have found that aging status of submarine cable systems are very poor and in progress. We have found that insulation status were improved with the replacement of cable terminations. We have confirmed with the electrical and structural analysis of terminations, that the poor aging status of cables are mainly caused not by the cable insulations but by the aging of cable terminations. From the above results, we have also confirmed that the domestic diagnostic system is successful and convenient for the discrimination and maintenance of the damaged cables economically.

  • PDF

A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants (원전 저압케이블 열화도 평가를 위한 초음파 음속계측에 관한 연구)

  • Kim, Kyung-Cho;Kang, Suk-Chull;Goo, Charles;Kim, Jin-Ho;Park, Jae-Seok;Joo, Geum-Jong;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed.

Design of Submarine Cable for Capacity Extension of Power Line (전력선 용량증대를 위한 해저케이블 설계)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Dong-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • A submarine power cable is a transmission cable for carrying electric power below the surface of the water. Recently, submarine cables transfer power from offshore renewable energy schemes to shore, e.g. wind, wave and tidal systems, and these cables are either buried in the seabed or lie on the ocean floor, depending on their location. Since these power cables are used in the extreme environments, they are made to withstand in harsh conditions and temperatures, and strong currents. However, undersea conditions are severe enough to cause all sorts of damage to offshore cables, these conditions result in cable faults that disrupt power transmission. In this paper, we explore the design criteria for such cables and the procedures and challenges of installation, and cable transfer splicing system. The specification of submarine cable designed with 3 circuits of 154kV which is composed of the existing single circuit and new double circuits, and power capacity of 100MVA per cable line. The determination of new submarine cable burial depth and cable arrangement method with both existing and new cables are studied. We have calculated the permission values of cable power capacity for underground route, the values show the over 100MW per cable line.

Characteristics of Insulation Aging in High Voltage Cables (고압케이블의 절연열화 특성)

  • Kim, Kyeong-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.88-88
    • /
    • 2010
  • High Voltage cross-linked polyethylene (XLPE) cables are widely used in a thermal power plant. These cables had been in service for 26 years. The insulation condition of six 6 kV XLPE cables was estimated by insulation diagnostic analyzer (IDA) with voltage amplifier. IDA was measured dissipation factor and capacitance of the whole cable as a function of frequency and voltage. This system measures in the frequency range from 0.1 to 10 Hz at each voltage level. Six XLPE cables are judged good condition, but three cables are analyzed at an aged condition.

  • PDF

Analysis of Monitored Insulation Data Using Standard Deviation of Leakage Current Data in High-Power Cables at a Thermoelectric Power Station (화력발전소 고전력 케이블의 누설 전류 측정 데이터의 표준 편차값을 사용한 절연감시 데이터 분석)

  • Kim, Bo-Kyeong;Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.245-250
    • /
    • 2017
  • From the instant of installation and operation, power cables start deteriorating. Cable systems can be maintained not only by monitoring the insulation status of the insulation layer and oversheath, but also the insulation status of the terminal and junction in high-voltage power cables. When the cable system (the cable itself and cable junctions combined) deteriorates, fire accidents happen due to dielectric breakdowns. We have invented a device to monitor the deteriorating status of cables, and installed it at Korea Western Power Co. Ltd. located in Taean, Chungcheongnam-do Province. In this paper, we present the results obtained using our device, through analysing and calculating the standard deviation of leakage current from cable insulators attached to the cables. When the standard deviation of analysed leakage current falls below a critical value, a cable system is deemed to be operating safely. But when the standard deviation of analysed leakage current is larger than the critical value, the insulation status of the terminal and junction in the cable system is considered to have seriously deteriorated. The terminal and junction in the relevant system should then be replaced preemptively in order to prevent blackout accidents of cables caused by the suspension of power supply.

Development and performance test of a liquid nitrogen circulation pump for HTS power cable

  • Seok, Jihoon;Kim, Dongmin;Lee, Changhyeong;Kim, Manryeol;Choi, Jeongdong;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.28-33
    • /
    • 2018
  • With the continuous performance improvement and commercialization of HTS wires, there have been many efforts to commercialize HTS power cables recently. Unlike conventional power cables, a cryogenic cooling system is required for a HTS power cable and a cryogenic pump is one of the essential components to circulate subcooled liquid nitrogen and cool the HTS power cable. Especially, the development of a reliable and high-efficiency cryogenic pump is an important issue for the commercialization of HTS power cables of several kilometers or more. In this study, we designed and fabricated a cryogenic pump for subcooled liquid nitrogen with a mass flow rate of 1.2 kg/s, a differential pressure of 5 bar, and evaluated the hydraulic performance of the pump. Impeller design was conducted to meet the target design performance with 1 D analysis model and CFD analysis. The pump performance parameters such as pressure heads, mass flow rates, and efficiencies in accordance with rotating speeds were assessed using a laboratory's performance evaluation system.

Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids (고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가)

  • Lee, Dooyoung;Jung, Jinseung;Kim, Youngdae;Bang, Jiye
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.

The Consideration of Electrical Characteristics and Breakdown Lifetime in 22.9[kV] Underground Distribution Power Cables (22.9[kV] 지중배전용 전력케이블의 전기적 특성과 파괴수명 고찰)

  • Kim, Chung-Bae;Hong, Gyeong-Jin;Im, Jang-Seop;Jeong, U-Seong;Kim, Sang-Jun;Kim, Tae-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.628-633
    • /
    • 1999
  • Degradation diagnosis of XLPE insulated URD cables was accomplished through out new method, which was to be analyzed by non-electrical experiments and synthesized by degradation points. To supplement this method, It was also carried out using several electrical analyses. Tan$\delta$ had commonly a different tendency by means oftemperature and frequency and also appeared higher at the outer part rather than innerpart of insulator. PD-q increased generally in proportion to the applied voltage andshowed regular patterns in relation to the thickness of insulator. Breakdown voltageswere measured and breakdown lifetimes were predicted appling for Weibull distribution function. As a result, breakdown lifetime in failure cables was shorter up to$\fraction one-third$ times than that in general cables. It was very available to estimate cable degradation using above method, but it needs further study on XLPE insulated URD cables in order to improve reliability.

  • PDF

A Study on Practicality of Condition Monitoring Method of Accelerated Thermal Aging CSPE (가속열화 된 CSPE 상태감시법 유효성 평가)

  • Lee, Jung-Hoon;Goo, Cheol-Soo;Kim, In-Yong;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2088-2092
    • /
    • 2011
  • The accelerated thermal aging of CSPE(chloro sulfonate polyethylene) of test cables were carried out for the period equal to 10, 20 and 30 years in air at $100^{\circ}C$, respectively. The CSPE cables(TAIHAN electric wire Co. Ltd) which installed in nuclear power plant for three years were used as starting materials. Condition monitering methods of the accelerated thermal aging of CSPE cables were estimated through indenter modulus and OIT(oxidation induction time) of IEC 62582, and those were newly estimated through volume electrical resistivity, ultrasound reflection time, density, FE-SEM(field emission scanning electron microscopy), XPS(x-ray photoelectron spectroscopy), EDS(energy dispersive spectroscopy), and WD-XRF(wavelength dispersive x-ray fluorescence). A new condition monitoring methods of the accelerated thermal aging of CSPE cables were generally coincident with trend of indenter modulus expect EDS, XPS and XRF. A volume electrical resistivity among new condition monitoring methods of the accelerated thermal aging of CSPE cables is excellent. It is considered that life-time of CSPE cable can be predicted through volume electrical resistivity, if CSPE jacket was aged for period such as more than 20 years.

The Ampacity of Dissimilar Power Cables Installed in Thermally Dissimilar Soil Materials (이종매질에서의 이종전력케이블에 대한 은도 및 허용전류 계산)

  • Jeong, S.H.;Choi, S.B.;Nam, K.Y.;Ryoo, H.S.;Lee, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.399-401
    • /
    • 2005
  • When power cables cross regions with unfavorable thermal conditions, conductor temperatures higher than the design value can occur. This paper proposes the calculation algorithms of the permissible current-carrying capability of dissimilar power cables installed in thermally dissimilar soil materials.

  • PDF