• Title/Summary/Keyword: Powder pressing

Search Result 389, Processing Time 0.023 seconds

A Study on the Characteristics of Amorphous TiAl by P/M Processing

  • Han, Chang-Suk;Jeon, Seung-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.2
    • /
    • pp.51-55
    • /
    • 2016
  • The P/M processing of titanium aluminide using amorphous TiAl is developed by which it is possible to overcome inherent fabricability problems and to obtain a fine microstructure. A high quality amorphous TiAl powder produced by reaction ball milling shows clear glass transition far below a temperature at the onset of crystallization in differential scanning calorimetry above a heating rate of 0.05 K/s. We obtained a fully dense compact of amorphous TiAl powders, encapsulated in a vacuumed can, via viscous flow by hot isostatic pressing (HIP). Isothermally annealing of HIP'ed amorphous compact under a pressure of 196 MPa shows a progressive growth of ${\gamma}-TiAl$ phase with ${\alpha}2$ ($Ti_3Al$), which is characterized by increasing sharpness of X-ray peaks with temperature. Fully dense HIP'ed compact of titanium aluminide TiAl shows a high hardness of 505 Hv, suggesting strengthening mechanisms by sub-micron sized grain of ${\gamma}-TiAl$ and particle-dispersion by second phase constituent, ${\alpha}2$.

Facture Prediction in SiC Fiber Reinforced $Si_3N_4$ Matrix Composites from Electrical Resistivity Measurements (전기저항측정에 의한 SiC섬유강화 $Si_3N_4$기 복합재료의 파괴예측)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.364-368
    • /
    • 2000
  • SiC fiber reinforced $Si_3N_4$ matrix composites combined with electrical conductive phases of carbon fiber and WC powder fabricated by hot pressing at 1773K. The ability to predict fracture in the ceramic matrix composites was evaluated by measuring simultaneous load-deflection and electrical resistanc difference-deflection curves in four point bending tests. The changes in electrical resistance differences closely corresponded to the fracture behavior of the composites. Different electrical conductive phases are suited to predicting different stages and rates of fracture. These obsevations how that it is possible to perform "in situ" fracture detection in ceramic composites.

  • PDF

Transparent Ceramics for Visible/IR Windows: Processing, Materials and Characterization

  • Jung, Wook Ki;Ma, Ho Jin;Kim, Ha-Neul;Kim, Do Kyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.551-563
    • /
    • 2018
  • Visible and IR windows require a combination of high optical transparency and superior thermal and mechanical properties. Materials, fabrication and characterization of transparent ceramics for visible/IR windows are discussed in this review. The transparent polycrystalline $Y_2O_3$, $Y_2O_3-MgO$ nanocomposites and $MgAl_2O_4$ spinel ceramics are fabricated by advanced ceramic processing and the use of special sintering technologies. Ceramic processing conditions for achieveing fully densified transparent ceramics are strongly dependent on the initial powder characteristics. In addition, appropriate use of sintering technologies, including vacuum sintering, hot-pressing and spark plasama sintering methods, results in outstanding thermal and mechanical properties as well as high optical transparency of the final products. Specifically, the elimination of light scattering factors, including residual pores, second phases and grain boundaries, is a key technique for improving the characteristics of the transparent ceramics. This paper discusses the current research issues related to synthesis methods and sintering processes for yttria-based transparent ceramics and $MgAl_2O_4$ spinel.

High-Temperature Strength of the Hot-Pressed Partially Stabilized $\alpha$-Sialon Ceramics Having the Composition of Y0.1(Si, Al)12(N, O)16 ($Y_{0.1}$(Si, Al)$_12$(N, O)$_16$의 조성을 갖는 부분안정화 $\alpha$-Sialon 열간가압소결체의 고온강도)

  • 조덕호;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.410-418
    • /
    • 1992
  • Si3N4, AlN and Y2O3 powder mixtures of the Y0.1(Si, Al)12(N, O)16 composition were hot-pressed at 1900℃ for 0 to 60 min under 30 MPa in order to fabricate the partially-stabilized α-Sialon ceramics (X=0.1). Room and high temperature flexural strengths of the specimens were compared with those of Si3N4-5 wt%Y2O3, Si3N4-5 wt%Y2O3-2 wt%Al2O3, and β-Sialon (Z=0.5) ceramics. The flexural strength of the α-Sialon ceramics which was hot-pressed for 15 min showed the highest value of 820 MPa at 1400℃ that is relatively higher temperature. It is guessed that a little amount of glassy phase existed in grain boundary because Y2O3 and AlN components were incoperated in Si3N4 grains, or transient liquid phase sintering, and microstructure with the smaller grain size and the interlocked grains of α'-and β-Si3N4 was obtained by the hot-pressing at high temperature of 1900℃ for the short time (15 min).

  • PDF

Fabrication of Li2ZrO3 Membrane and Evaluation on the Mechanical Properties Before and After CO2 Separation (Li2ZrO3 분리막의 제조와 이산화탄소 선택투과 전후의 기계적 특성 평가)

  • Park, Sang-Hyun;Lee, Shi-Woo;Yu, Ji-Haeng;Woo, Sang-Kuk;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.58-64
    • /
    • 2007
  • In this study, we investigated $Li_2ZrO_3$ membrane as a candidate material for high-temperature $CO_2$ separation and evaluated mechanical property. $Li_2ZrO_3$ powder was synthesized by solid state reaction of $Li_2CO_3\;and\;ZrO_2$. Then we fabricated $Li_2ZrO_3$ tape using tape casting method. Dense $Li_2ZrO_3$ membrane prepared by sintering at $1600^{\circ}C$ for 2 h after pressing $Li_2ZrO_3$ tape using lamination machine. Mechanical properties before and after $CO_2$ absorption of fabricated $Li_2ZrO_3$ membrane such as Hertzian indentation, Victors hardness and 3-point bending testing were evaluated.

The thermal stabilization characteristics of electrolyte membrane in high temperature electrolysis[HTE] (고온 수전해 전해질 막의 열안정화 특성 고찰)

  • Choi, Ho-Sang;Son, Hyo-Seok;Sim, Kyu-Sung;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.150-158
    • /
    • 2005
  • Added ratio of 8YSZ powder and organic compounds (solvent, plasticizer, dispersant, binder) properly. It manufactured electrolysis membrane by wet process that make slurry and dry process that do not use organic compounds. In the case of wet process, harmony combination and method of organic compound are an importance element in slurry manufacture. This slurry did calcine at temperature of 140$^{\circ}C$ in Furnace and manufactured electrolyte disk by Dry pressing method. Like this, manufacturing disk sintered at temperature of $1300^{\circ}C,\;1400^{\circ},\;1500^{\circ}C$ in Furnace and completed electrolysis membrane. Confirmed change of crystal structure and decision form through analysis of density, SEM, XRD according to change of sintering temperature, and considered relation with ion conductivity.

Synthesis of $\alpha$-Sialon Ceramics from an Alkoxide and Their Mechanical Properties(I) (알콕사이드로부터 $\alpha$-Sialon 세라믹스의 제조 및 기계적 성질(I))

  • 이홍림;윤창현;조덕호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.130-140
    • /
    • 1991
  • The powders of the system Si3N4-Y2O3-AlN were prepared using Si(OC2H5)4 and YCl3.6H2O together with commercial AlN powder. $\alpha$-Si3N4 was prepared by the carbothermal reduction and nitridation of the hydrolyzed gel at 135$0^{\circ}C$ for 10h in N2 atmosphere. YCl3.6H2O was observed to be changed to Y2O3 during the reaction. $\alpha$-Sialon(X=0.2, 0.4, 0.6) ceramics were obtained by hot-pressing the Si3N4-Y2O3-AlN mixture at 178$0^{\circ}C$ for 1h under 30 MPa. The content of $\alpha$-Sialon increased with increasing metal solubility(x value) and $\alpha$-Sialon single phase was obtained at the metal solubility of 0.6. With increasing metal solubility, flexural strength, fracture toughness and thermal shock resistence were decreased, while the microhardness was increased. Large elongated $\beta$-Si3N4 grains were mainly observed at lower metal solubility. Mechanical prorerties of the sintered ceramics with X=0.2 were measured as follows : flexural strength ; 650 MPa, fracture toughness ; 3.63 MN/m3/2, hardness ; 14.7 GPa, thermal shock resistence temperature ; 58$0^{\circ}C$.

  • PDF

Mechanical Properties of the Pressureless Sintered Al2O3-SiC Composites(2) : Dispersion Effects of SiC Whisker (상압소결한 Al2O3-SiC계 소결체의 기계적 성질(2) : SiC Whisker의 분산효과)

  • 김경수;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.704-712
    • /
    • 1988
  • In order to investigate the effect of the second phase on Al2O3 matrix, SiC whisker was dispersed in Al2O3 matrix as a second phase over the content range of 5vol% to 20vol%. To this mixture, Y2O3 or TiO2 powder was added as a sintering additive before isostatically pressing and pressureless sintering at 1800-190$0^{\circ}C$ for 90min in N2 atmosphere. With increasing SiC whisker content, relative densities of composites were decreased and the grain growth of Al2O3 was restricted. When Y2O3 was added as a sintering aid the sintering temperature was 180$0^{\circ}C$, the maximum values of flexural strength, hardness and fracture toughness were 537MPa, 12.1GPa, 3.7MPa.m1/2, respectively. However, when the sintering temperature was elevated to 190$0^{\circ}C$, maximum values of flexural strength, hardness and fracture toughness were 453MPa, 17.5GPa, 4.9MPa.m1/2, respectively. Improved mechanical properties are assumed to be attributed to the crack deflection by the second phase SiC whisker and whisker pullout mechanism.

  • PDF

Fabrication of SiCf/SiC Composites using an Electrophoretic Deposition

  • Lee, Jong-Hyun;Gil, Gun-Young;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.447-451
    • /
    • 2009
  • Continuous SiC fiber-reinforced SiC composites ($SiC_f$/SiC) were fabricated by electrophoretic deposition (EPD). Nine types of slurries with different powder contents, binder resin amounts and slurry pH were deposited on Tyranno$^{TM}$-SA fabrics by EPD at 135 V for ten minutes to determine the optimal conditions. Further EPD using the optimum slurry conditions was performed on fabrics with four different pyrolitic carbon (PyC) thicknesses. The density of the hot-pressed composites decreased with increasing PyC thickness due to the difficulty of infiltrating the slurry into the narrow gaps between the fibers. On the other hand, the mechanical strength increased with increasing PyC thickness despite the decrease in density, which was explained by the enhanced crack deflection with increasing PyC thickness. The $SiC_f$/SiC composites showed the highest density and flexural strength of 94% and 342 MPa, respectively, showing EPD as a feasible method for dense $SiC_f$/SiC fabrication.

Hydrogen Permeance of Ce1-xYxO2-δ Membranes According to Yttrium Content

  • Song, Da-Heoi;Jung, Mie-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.451-453
    • /
    • 2013
  • Porous ceramic membranes consisting of $Ce_{1-x}Y_xO_{2-{\delta}}$ were developed for hydrogen permeation tests. Various amounts (x = 0, 0.05, 0.1, 0.2) of yttrium were doped to ceria to study the effect of yttrium doping on ceria membranes on various properties, including hydrogen permeability. $Ce_{1-x}Y_xO_{2-{\delta}}$ powder was synthesized by the sol-gel method. These membranes were fabricated by pressing and sintering at $1300^{\circ}C$ for 6 h. As the amount of yttrium increased, the grain size of the membrane decreased. Hydrogen permeability was improved as the yttrium content increased. Selective permeability of hydrogen compared to CO is explained by electric conductivity. As the temperature rose, both the hydrogen perm-selectivity and electric conductivity on $Ce_{0.8}Y_{0.2}O_{1.9}$ improved.